1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/compat/cuda/cuda_runtime.h

190 lines
6.3 KiB
C
Raw Normal View History

/*
* Minimum CUDA compatibility definitions header
*
2021-01-20 09:02:56 +02:00
* Copyright (c) 2019 rcombs
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef COMPAT_CUDA_CUDA_RUNTIME_H
#define COMPAT_CUDA_CUDA_RUNTIME_H
// Common macros
#define __global__ __attribute__((global))
#define __device__ __attribute__((device))
#define __device_builtin__ __attribute__((device_builtin))
#define __align__(N) __attribute__((aligned(N)))
#define __inline__ __inline__ __attribute__((always_inline))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
#define abs(x) ((x) < 0 ? -(x) : (x))
#define atomicAdd(a, b) (__atomic_fetch_add(a, b, __ATOMIC_SEQ_CST))
// Basic typedefs
typedef __device_builtin__ unsigned long long cudaTextureObject_t;
typedef struct __device_builtin__ __align__(2) uchar2
{
unsigned char x, y;
} uchar2;
typedef struct __device_builtin__ __align__(4) ushort2
{
unsigned short x, y;
} ushort2;
typedef struct __device_builtin__ __align__(8) float2
{
float x, y;
} float2;
typedef struct __device_builtin__ __align__(8) int2
{
int x, y;
} int2;
typedef struct __device_builtin__ uint3
{
unsigned int x, y, z;
} uint3;
typedef struct uint3 dim3;
typedef struct __device_builtin__ __align__(4) uchar4
{
unsigned char x, y, z, w;
} uchar4;
typedef struct __device_builtin__ __align__(8) ushort4
{
unsigned short x, y, z, w;
} ushort4;
typedef struct __device_builtin__ __align__(16) int4
{
int x, y, z, w;
} int4;
typedef struct __device_builtin__ __align__(16) float4
{
float x, y, z, w;
} float4;
// Accessors for special registers
#define GETCOMP(reg, comp) \
asm("mov.u32 %0, %%" #reg "." #comp ";" : "=r"(tmp)); \
ret.comp = tmp;
#define GET(name, reg) static inline __device__ uint3 name() {\
uint3 ret; \
unsigned tmp; \
GETCOMP(reg, x) \
GETCOMP(reg, y) \
GETCOMP(reg, z) \
return ret; \
}
GET(getBlockIdx, ctaid)
GET(getBlockDim, ntid)
GET(getThreadIdx, tid)
// Instead of externs for these registers, we turn access to them into calls into trivial ASM
#define blockIdx (getBlockIdx())
#define blockDim (getBlockDim())
#define threadIdx (getThreadIdx())
// Basic initializers (simple macros rather than inline functions)
#define make_int2(a, b) ((int2){.x = a, .y = b})
#define make_uchar2(a, b) ((uchar2){.x = a, .y = b})
#define make_ushort2(a, b) ((ushort2){.x = a, .y = b})
#define make_float2(a, b) ((float2){.x = a, .y = b})
#define make_int4(a, b, c, d) ((int4){.x = a, .y = b, .z = c, .w = d})
#define make_uchar4(a, b, c, d) ((uchar4){.x = a, .y = b, .z = c, .w = d})
#define make_ushort4(a, b, c, d) ((ushort4){.x = a, .y = b, .z = c, .w = d})
#define make_float4(a, b, c, d) ((float4){.x = a, .y = b, .z = c, .w = d})
// Conversions from the tex instruction's 4-register output to various types
#define TEX2D(type, ret) static inline __device__ void conv(type* out, unsigned a, unsigned b, unsigned c, unsigned d) {*out = (ret);}
TEX2D(unsigned char, a & 0xFF)
TEX2D(unsigned short, a & 0xFFFF)
TEX2D(float, a)
TEX2D(uchar2, make_uchar2(a & 0xFF, b & 0xFF))
TEX2D(ushort2, make_ushort2(a & 0xFFFF, b & 0xFFFF))
TEX2D(float2, make_float2(a, b))
TEX2D(uchar4, make_uchar4(a & 0xFF, b & 0xFF, c & 0xFF, d & 0xFF))
TEX2D(ushort4, make_ushort4(a & 0xFFFF, b & 0xFFFF, c & 0xFFFF, d & 0xFFFF))
TEX2D(float4, make_float4(a, b, c, d))
// Template calling tex instruction and converting the output to the selected type
template<typename T>
inline __device__ T tex2D(cudaTextureObject_t texObject, float x, float y)
{
T ret;
unsigned ret1, ret2, ret3, ret4;
asm("tex.2d.v4.u32.f32 {%0, %1, %2, %3}, [%4, {%5, %6}];" :
"=r"(ret1), "=r"(ret2), "=r"(ret3), "=r"(ret4) :
"l"(texObject), "f"(x), "f"(y));
conv(&ret, ret1, ret2, ret3, ret4);
return ret;
}
template<>
inline __device__ float4 tex2D<float4>(cudaTextureObject_t texObject, float x, float y)
{
float4 ret;
asm("tex.2d.v4.f32.f32 {%0, %1, %2, %3}, [%4, {%5, %6}];" :
"=r"(ret.x), "=r"(ret.y), "=r"(ret.z), "=r"(ret.w) :
"l"(texObject), "f"(x), "f"(y));
return ret;
}
template<>
inline __device__ float tex2D<float>(cudaTextureObject_t texObject, float x, float y)
{
return tex2D<float4>(texObject, x, y).x;
}
template<>
inline __device__ float2 tex2D<float2>(cudaTextureObject_t texObject, float x, float y)
{
float4 ret = tex2D<float4>(texObject, x, y);
return make_float2(ret.x, ret.y);
}
// Math helper functions
static inline __device__ float floorf(float a) { return __builtin_floorf(a); }
static inline __device__ float floor(float a) { return __builtin_floorf(a); }
static inline __device__ double floor(double a) { return __builtin_floor(a); }
static inline __device__ float ceilf(float a) { return __builtin_ceilf(a); }
static inline __device__ float ceil(float a) { return __builtin_ceilf(a); }
static inline __device__ double ceil(double a) { return __builtin_ceil(a); }
static inline __device__ float truncf(float a) { return __builtin_truncf(a); }
static inline __device__ float trunc(float a) { return __builtin_truncf(a); }
static inline __device__ double trunc(double a) { return __builtin_trunc(a); }
static inline __device__ float fabsf(float a) { return __builtin_fabsf(a); }
static inline __device__ float fabs(float a) { return __builtin_fabsf(a); }
static inline __device__ double fabs(double a) { return __builtin_fabs(a); }
static inline __device__ float __sinf(float a) { return __nvvm_sin_approx_f(a); }
static inline __device__ float __cosf(float a) { return __nvvm_cos_approx_f(a); }
static inline __device__ float __expf(float a) { return __nvvm_ex2_approx_f(a * (float)__builtin_log2(__builtin_exp(1))); }
#endif /* COMPAT_CUDA_CUDA_RUNTIME_H */