mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-13 21:28:01 +02:00
avfilter: add Dynamic Audio Normalizer filter
This commit is contained in:
parent
3b365dda5c
commit
21436b95dc
158
doc/filters.texi
158
doc/filters.texi
@ -1544,6 +1544,164 @@ Optional. It should have a value much less than 1 (e.g. 0.05 or 0.02) and is
|
||||
used to prevent clipping.
|
||||
@end table
|
||||
|
||||
@section dynaudnorm
|
||||
Dynamic Audio Normalizer.
|
||||
|
||||
This filter applies a certain amount of gain to the input audio in order
|
||||
to bring its peak magnitude to a target level (e.g. 0 dBFS). However, in
|
||||
contrast to more "simple" normalization algorithms, the Dynamic Audio
|
||||
Normalizer *dynamically* re-adjusts the gain factor to the input audio.
|
||||
This allows for applying extra gain to the "quiet" sections of the audio
|
||||
while avoiding distortions or clipping the "loud" sections. In other words:
|
||||
The Dynamic Audio Normalizer will "even out" the volume of quiet and loud
|
||||
sections, in the sense that the volume of each section is brought to the
|
||||
same target level. Note, however, that the Dynamic Audio Normalizer achieves
|
||||
this goal *without* applying "dynamic range compressing". It will retain 100%
|
||||
of the dynamic range *within* each section of the audio file.
|
||||
|
||||
@table @option
|
||||
@item f
|
||||
Set the frame length in milliseconds. In range from 10 to 8000 milliseconds.
|
||||
Default is 500 milliseconds.
|
||||
The Dynamic Audio Normalizer processes the input audio in small chunks,
|
||||
referred to as frames. This is required, because a peak magnitude has no
|
||||
meaning for just a single sample value. Instead, we need to determine the
|
||||
peak magnitude for a contiguous sequence of sample values. While a "standard"
|
||||
normalizer would simply use the peak magnitude of the complete file, the
|
||||
Dynamic Audio Normalizer determines the peak magnitude individually for each
|
||||
frame. The length of a frame is specified in milliseconds. By default, the
|
||||
Dynamic Audio Normalizer uses a frame length of 500 milliseconds, which has
|
||||
been found to give good results with most files.
|
||||
Note that the exact frame length, in number of samples, will be determined
|
||||
automatically, based on the sampling rate of the individual input audio file.
|
||||
|
||||
@item g
|
||||
Set the Gaussian filter window size. In range from 3 to 301, must be odd
|
||||
number. Default is 31.
|
||||
Probably the most important parameter of the Dynamic Audio Normalizer is the
|
||||
@code{window size} of the Gaussian smoothing filter. The filter's window size
|
||||
is specified in frames, centered around the current frame. For the sake of
|
||||
simplicity, this must be an odd number. Consequently, the default value of 31
|
||||
takes into account the current frame, as well as the 15 preceding frames and
|
||||
the 15 subsequent frames. Using a larger window results in a stronger
|
||||
smoothing effect and thus in less gain variation, i.e. slower gain
|
||||
adaptation. Conversely, using a smaller window results in a weaker smoothing
|
||||
effect and thus in more gain variation, i.e. faster gain adaptation.
|
||||
In other words, the more you increase this value, the more the Dynamic Audio
|
||||
Normalizer will behave like a "traditional" normalization filter. On the
|
||||
contrary, the more you decrease this value, the more the Dynamic Audio
|
||||
Normalizer will behave like a dynamic range compressor.
|
||||
|
||||
@item p
|
||||
Set the target peak value. This specifies the highest permissible magnitude
|
||||
level for the normalized audio input. This filter will try to approach the
|
||||
target peak magnitude as closely as possible, but at the same time it also
|
||||
makes sure that the normalized signal will never exceed the peak magnitude.
|
||||
A frame's maximum local gain factor is imposed directly by the target peak
|
||||
magnitude. The default value is 0.95 and thus leaves a headroom of 5%*.
|
||||
It is not recommended to go above this value.
|
||||
|
||||
@item m
|
||||
Set the maximum gain factor. In range from 1.0 to 100.0. Default is 10.0.
|
||||
The Dynamic Audio Normalizer determines the maximum possible (local) gain
|
||||
factor for each input frame, i.e. the maximum gain factor that does not
|
||||
result in clipping or distortion. The maximum gain factor is determined by
|
||||
the frame's highest magnitude sample. However, the Dynamic Audio Normalizer
|
||||
additionally bounds the frame's maximum gain factor by a predetermined
|
||||
(global) maximum gain factor. This is done in order to avoid excessive gain
|
||||
factors in "silent" or almost silent frames. By default, the maximum gain
|
||||
factor is 10.0, For most inputs the default value should be sufficient and
|
||||
it usually is not recommended to increase this value. Though, for input
|
||||
with an extremely low overall volume level, it may be necessary to allow even
|
||||
higher gain factors. Note, however, that the Dynamic Audio Normalizer does
|
||||
not simply apply a "hard" threshold (i.e. cut off values above the threshold).
|
||||
Instead, a "sigmoid" threshold function will be applied. This way, the
|
||||
gain factors will smoothly approach the threshold value, but never exceed that
|
||||
value.
|
||||
|
||||
@item r
|
||||
Set the target RMS. In range from 0.0 to 1.0. Default is 0.0 - disabled.
|
||||
By default, the Dynamic Audio Normalizer performs "peak" normalization.
|
||||
This means that the maximum local gain factor for each frame is defined
|
||||
(only) by the frame's highest magnitude sample. This way, the samples can
|
||||
be amplified as much as possible without exceeding the maximum signal
|
||||
level, i.e. without clipping. Optionally, however, the Dynamic Audio
|
||||
Normalizer can also take into account the frame's root mean square,
|
||||
abbreviated RMS. In electrical engineering, the RMS is commonly used to
|
||||
determine the power of a time-varying signal. It is therefore considered
|
||||
that the RMS is a better approximation of the "perceived loudness" than
|
||||
just looking at the signal's peak magnitude. Consequently, by adjusting all
|
||||
frames to a constant RMS value, a uniform "perceived loudness" can be
|
||||
established. If a target RMS value has been specified, a frame's local gain
|
||||
factor is defined as the factor that would result in exactly that RMS value.
|
||||
Note, however, that the maximum local gain factor is still restricted by the
|
||||
frame's highest magnitude sample, in order to prevent clipping.
|
||||
|
||||
@item n
|
||||
Enable channels coupling. By default is enabled.
|
||||
By default, the Dynamic Audio Normalizer will amplify all channels by the same
|
||||
amount. This means the same gain factor will be applied to all channels, i.e.
|
||||
the maximum possible gain factor is determined by the "loudest" channel.
|
||||
However, in some recordings, it may happen that the volume of the different
|
||||
channels is uneven, e.g. one channel may be "quieter" than the other one(s).
|
||||
In this case, this option can be used to disable the channel coupling. This way,
|
||||
the gain factor will be determined independently for each channel, depending
|
||||
only on the individual channel's highest magnitude sample. This allows for
|
||||
harmonizing the volume of the different channels.
|
||||
|
||||
@item c
|
||||
Enable DC bias correction. By default is disabled.
|
||||
An audio signal (in the time domain) is a sequence of sample values.
|
||||
In the Dynamic Audio Normalizer these sample values are represented in the
|
||||
-1.0 to 1.0 range, regardless of the original input format. Normally, the
|
||||
audio signal, or "waveform", should be centered around the zero point.
|
||||
That means if we calculate the mean value of all samples in a file, or in a
|
||||
single frame, then the result should be 0.0 or at least very close to that
|
||||
value. If, however, there is a significant deviation of the mean value from
|
||||
0.0, in either positive or negative direction, this is referred to as a
|
||||
DC bias or DC offset. Since a DC bias is clearly undesirable, the Dynamic
|
||||
Audio Normalizer provides optional DC bias correction.
|
||||
With DC bias correction enabled, the Dynamic Audio Normalizer will determine
|
||||
the mean value, or "DC correction" offset, of each input frame and subtract
|
||||
that value from all of the frame's sample values which ensures those samples
|
||||
are centered around 0.0 again. Also, in order to avoid "gaps" at the frame
|
||||
boundaries, the DC correction offset values will be interpolated smoothly
|
||||
between neighbouring frames.
|
||||
|
||||
@item b
|
||||
Enable alternative boundary mode. By default is disabled.
|
||||
The Dynamic Audio Normalizer takes into account a certain neighbourhood
|
||||
around each frame. This includes the preceding frames as well as the
|
||||
subsequent frames. However, for the "boundary" frames, located at the very
|
||||
beginning and at the very end of the audio file, not all neighbouring
|
||||
frames are available. In particular, for the first few frames in the audio
|
||||
file, the preceding frames are not known. And, similarly, for the last few
|
||||
frames in the audio file, the subsequent frames are not known. Thus, the
|
||||
question arises which gain factors should be assumed for the missing frames
|
||||
in the "boundary" region. The Dynamic Audio Normalizer implements two modes
|
||||
to deal with this situation. The default boundary mode assumes a gain factor
|
||||
of exactly 1.0 for the missing frames, resulting in a smooth "fade in" and
|
||||
"fade out" at the beginning and at the end of the input, respectively.
|
||||
|
||||
@item s
|
||||
Set the compress factor. In range from 0.0 to 30.0. Default is 0.0.
|
||||
By default, the Dynamic Audio Normalizer does not apply "traditional"
|
||||
compression. This means that signal peaks will not be pruned and thus the
|
||||
full dynamic range will be retained within each local neighbourhood. However,
|
||||
in some cases it may be desirable to combine the Dynamic Audio Normalizer's
|
||||
normalization algorithm with a more "traditional" compression.
|
||||
For this purpose, the Dynamic Audio Normalizer provides an optional compression
|
||||
(thresholding) function. If (and only if) the compression feature is enabled,
|
||||
all input frames will be processed by a soft knee thresholding function prior
|
||||
to the actual normalization process. Put simply, the thresholding function is
|
||||
going to prune all samples whose magnitude exceeds a certain threshold value.
|
||||
However, the Dynamic Audio Normalizer does not simply apply a fixed threshold
|
||||
value. Instead, the threshold value will be adjusted for each individual
|
||||
frame.
|
||||
In general, smaller parameters result in stronger compression, and vice versa.
|
||||
Values below 3.0 are not recommended, because audible distortion may appear.
|
||||
@end table
|
||||
|
||||
@section earwax
|
||||
|
||||
Make audio easier to listen to on headphones.
|
||||
|
@ -67,6 +67,7 @@ OBJS-$(CONFIG_CHANNELSPLIT_FILTER) += af_channelsplit.o
|
||||
OBJS-$(CONFIG_CHORUS_FILTER) += af_chorus.o generate_wave_table.o
|
||||
OBJS-$(CONFIG_COMPAND_FILTER) += af_compand.o
|
||||
OBJS-$(CONFIG_DCSHIFT_FILTER) += af_dcshift.o
|
||||
OBJS-$(CONFIG_DYNAUDNORM_FILTER) += af_dynaudnorm.o
|
||||
OBJS-$(CONFIG_EARWAX_FILTER) += af_earwax.o
|
||||
OBJS-$(CONFIG_EBUR128_FILTER) += f_ebur128.o
|
||||
OBJS-$(CONFIG_EQUALIZER_FILTER) += af_biquads.o
|
||||
|
734
libavfilter/af_dynaudnorm.c
Normal file
734
libavfilter/af_dynaudnorm.c
Normal file
@ -0,0 +1,734 @@
|
||||
/*
|
||||
* Dynamic Audio Normalizer
|
||||
* Copyright (c) 2015 LoRd_MuldeR <mulder2@gmx.de>. Some rights reserved.
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* Dynamic Audio Normalizer
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "libavutil/avassert.h"
|
||||
#include "libavutil/opt.h"
|
||||
|
||||
#define FF_BUFQUEUE_SIZE 302
|
||||
#include "libavfilter/bufferqueue.h"
|
||||
|
||||
#include "audio.h"
|
||||
#include "avfilter.h"
|
||||
#include "internal.h"
|
||||
|
||||
typedef struct cqueue {
|
||||
double *elements;
|
||||
int size;
|
||||
int nb_elements;
|
||||
int first;
|
||||
} cqueue;
|
||||
|
||||
typedef struct DynamicAudioNormalizerContext {
|
||||
const AVClass *class;
|
||||
|
||||
struct FFBufQueue queue;
|
||||
|
||||
int frame_len;
|
||||
int frame_len_msec;
|
||||
int filter_size;
|
||||
int dc_correction;
|
||||
int channels_coupled;
|
||||
int alt_boundary_mode;
|
||||
|
||||
double peak_value;
|
||||
double max_amplification;
|
||||
double target_rms;
|
||||
double compress_factor;
|
||||
double *prev_amplification_factor;
|
||||
double *dc_correction_value;
|
||||
double *compress_threshold;
|
||||
double *fade_factors[2];
|
||||
double *weights;
|
||||
|
||||
int channels;
|
||||
int delay;
|
||||
|
||||
cqueue **gain_history_original;
|
||||
cqueue **gain_history_minimum;
|
||||
cqueue **gain_history_smoothed;
|
||||
} DynamicAudioNormalizerContext;
|
||||
|
||||
#define OFFSET(x) offsetof(DynamicAudioNormalizerContext, x)
|
||||
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
|
||||
|
||||
static const AVOption dynaudnorm_options[] = {
|
||||
{ "f", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS },
|
||||
{ "g", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS },
|
||||
{ "p", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS },
|
||||
{ "m", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS },
|
||||
{ "r", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
|
||||
{ "n", "enable channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 1, FLAGS },
|
||||
{ "c", "enable DC correction", OFFSET(dc_correction), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, FLAGS },
|
||||
{ "b", "enable alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, FLAGS },
|
||||
{ "s", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS },
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
AVFILTER_DEFINE_CLASS(dynaudnorm);
|
||||
|
||||
static av_cold int init(AVFilterContext *ctx)
|
||||
{
|
||||
DynamicAudioNormalizerContext *s = ctx->priv;
|
||||
|
||||
if (!(s->filter_size & 1)) {
|
||||
av_log(ctx, AV_LOG_ERROR, "filter size %d is invalid. Must be an odd value.\n", s->filter_size);
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int query_formats(AVFilterContext *ctx)
|
||||
{
|
||||
AVFilterFormats *formats;
|
||||
AVFilterChannelLayouts *layouts;
|
||||
static const enum AVSampleFormat sample_fmts[] = {
|
||||
AV_SAMPLE_FMT_DBLP,
|
||||
AV_SAMPLE_FMT_NONE
|
||||
};
|
||||
int ret;
|
||||
|
||||
layouts = ff_all_channel_layouts();
|
||||
if (!layouts)
|
||||
return AVERROR(ENOMEM);
|
||||
ret = ff_set_common_channel_layouts(ctx, layouts);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
formats = ff_make_format_list(sample_fmts);
|
||||
if (!formats)
|
||||
return AVERROR(ENOMEM);
|
||||
ret = ff_set_common_formats(ctx, formats);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
formats = ff_all_samplerates();
|
||||
if (!formats)
|
||||
return AVERROR(ENOMEM);
|
||||
return ff_set_common_samplerates(ctx, formats);
|
||||
}
|
||||
|
||||
static inline int frame_size(int sample_rate, int frame_len_msec)
|
||||
{
|
||||
const int frame_size = round((double)sample_rate * (frame_len_msec / 1000.0));
|
||||
return frame_size + (frame_size % 2);
|
||||
}
|
||||
|
||||
static void precalculate_fade_factors(double *fade_factors[2], int frame_len)
|
||||
{
|
||||
const double step_size = 1.0 / frame_len;
|
||||
int pos;
|
||||
|
||||
for (pos = 0; pos < frame_len; pos++) {
|
||||
fade_factors[0][pos] = 1.0 - (step_size * (pos + 1.0));
|
||||
fade_factors[1][pos] = 1.0 - fade_factors[0][pos];
|
||||
}
|
||||
}
|
||||
|
||||
static cqueue *cqueue_create(int size)
|
||||
{
|
||||
cqueue *q;
|
||||
|
||||
q = av_malloc(sizeof(cqueue));
|
||||
if (!q)
|
||||
return NULL;
|
||||
|
||||
q->size = size;
|
||||
q->nb_elements = 0;
|
||||
q->first = 0;
|
||||
|
||||
q->elements = av_malloc(sizeof(double) * size);
|
||||
if (!q->elements) {
|
||||
av_free(q);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return q;
|
||||
}
|
||||
|
||||
static void cqueue_free(cqueue *q)
|
||||
{
|
||||
av_free(q->elements);
|
||||
av_free(q);
|
||||
}
|
||||
|
||||
static int cqueue_size(cqueue *q)
|
||||
{
|
||||
return q->nb_elements;
|
||||
}
|
||||
|
||||
static int cqueue_empty(cqueue *q)
|
||||
{
|
||||
return !q->nb_elements;
|
||||
}
|
||||
|
||||
static int cqueue_enqueue(cqueue *q, double element)
|
||||
{
|
||||
int i;
|
||||
|
||||
av_assert2(q->nb_elements |= q->size);
|
||||
|
||||
i = (q->first + q->nb_elements) % q->size;
|
||||
q->elements[i] = element;
|
||||
q->nb_elements++;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static double cqueue_peek(cqueue *q, int index)
|
||||
{
|
||||
av_assert2(index < q->nb_elements);
|
||||
return q->elements[(q->first + index) % q->size];
|
||||
}
|
||||
|
||||
static int cqueue_dequeue(cqueue *q, double *element)
|
||||
{
|
||||
av_assert2(!cqueue_empty(q));
|
||||
|
||||
*element = q->elements[q->first];
|
||||
q->first = (q->first + 1) % q->size;
|
||||
q->nb_elements--;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cqueue_pop(cqueue *q)
|
||||
{
|
||||
av_assert2(!cqueue_empty(q));
|
||||
|
||||
q->first = (q->first + 1) % q->size;
|
||||
q->nb_elements--;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const double s_pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679;
|
||||
|
||||
static void init_gaussian_filter(DynamicAudioNormalizerContext *s)
|
||||
{
|
||||
double total_weight = 0.0;
|
||||
const double sigma = (((s->filter_size / 2.0) - 1.0) / 3.0) + (1.0 / 3.0);
|
||||
double adjust;
|
||||
int i;
|
||||
|
||||
// Pre-compute constants
|
||||
const int offset = s->filter_size / 2;
|
||||
const double c1 = 1.0 / (sigma * sqrt(2.0 * s_pi));
|
||||
const double c2 = 2.0 * pow(sigma, 2.0);
|
||||
|
||||
// Compute weights
|
||||
for (i = 0; i < s->filter_size; i++) {
|
||||
const int x = i - offset;
|
||||
|
||||
s->weights[i] = c1 * exp(-(pow(x, 2.0) / c2));
|
||||
total_weight += s->weights[i];
|
||||
}
|
||||
|
||||
// Adjust weights
|
||||
adjust = 1.0 / total_weight;
|
||||
for (i = 0; i < s->filter_size; i++) {
|
||||
s->weights[i] *= adjust;
|
||||
}
|
||||
}
|
||||
|
||||
static int config_input(AVFilterLink *inlink)
|
||||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
DynamicAudioNormalizerContext *s = ctx->priv;
|
||||
int c;
|
||||
|
||||
s->frame_len =
|
||||
inlink->min_samples =
|
||||
inlink->max_samples =
|
||||
inlink->partial_buf_size = frame_size(inlink->sample_rate, s->frame_len_msec);
|
||||
av_log(ctx, AV_LOG_DEBUG, "frame len %d\n", s->frame_len);
|
||||
|
||||
s->fade_factors[0] = av_malloc(s->frame_len * sizeof(*s->fade_factors[0]));
|
||||
s->fade_factors[1] = av_malloc(s->frame_len * sizeof(*s->fade_factors[1]));
|
||||
|
||||
s->prev_amplification_factor = av_malloc(inlink->channels * sizeof(*s->prev_amplification_factor));
|
||||
s->dc_correction_value = av_calloc(inlink->channels, sizeof(*s->dc_correction_value));
|
||||
s->compress_threshold = av_calloc(inlink->channels, sizeof(*s->compress_threshold));
|
||||
s->gain_history_original = av_calloc(inlink->channels, sizeof(*s->gain_history_original));
|
||||
s->gain_history_minimum = av_calloc(inlink->channels, sizeof(*s->gain_history_minimum));
|
||||
s->gain_history_smoothed = av_calloc(inlink->channels, sizeof(*s->gain_history_smoothed));
|
||||
s->weights = av_malloc(s->filter_size * sizeof(*s->weights));
|
||||
if (!s->prev_amplification_factor || !s->dc_correction_value ||
|
||||
!s->compress_threshold || !s->fade_factors[0] || !s->fade_factors[1] ||
|
||||
!s->gain_history_original || !s->gain_history_minimum ||
|
||||
!s->gain_history_smoothed || !s->weights)
|
||||
return AVERROR(ENOMEM);
|
||||
|
||||
for (c = 0; c < inlink->channels; c++) {
|
||||
s->prev_amplification_factor[c] = 1.0;
|
||||
|
||||
s->gain_history_original[c] = cqueue_create(s->filter_size);
|
||||
s->gain_history_minimum[c] = cqueue_create(s->filter_size);
|
||||
s->gain_history_smoothed[c] = cqueue_create(s->filter_size);
|
||||
|
||||
if (!s->gain_history_original[c] || !s->gain_history_minimum[c] ||
|
||||
!s->gain_history_smoothed[c])
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
precalculate_fade_factors(s->fade_factors, s->frame_len);
|
||||
init_gaussian_filter(s);
|
||||
|
||||
s->channels = inlink->channels;
|
||||
s->delay = s->filter_size;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int config_output(AVFilterLink *outlink)
|
||||
{
|
||||
outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline double fade(double prev, double next, int pos,
|
||||
double *fade_factors[2])
|
||||
{
|
||||
return fade_factors[0][pos] * prev + fade_factors[1][pos] * next;
|
||||
}
|
||||
|
||||
static inline double pow2(const double value)
|
||||
{
|
||||
return value * value;
|
||||
}
|
||||
|
||||
static inline double bound(const double threshold, const double val)
|
||||
{
|
||||
const double CONST = 0.8862269254527580136490837416705725913987747280611935; //sqrt(PI) / 2.0
|
||||
return erf(CONST * (val / threshold)) * threshold;
|
||||
}
|
||||
|
||||
static double find_peak_magnitude(AVFrame *frame, int channel)
|
||||
{
|
||||
double max = DBL_EPSILON;
|
||||
int c, i;
|
||||
|
||||
if (channel == -1) {
|
||||
for (c = 0; c < frame->channels; c++) {
|
||||
double *data_ptr = (double *)frame->extended_data[c];
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++)
|
||||
max = FFMAX(max, fabs(data_ptr[i]));
|
||||
}
|
||||
} else {
|
||||
double *data_ptr = (double *)frame->extended_data[channel];
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++)
|
||||
max = FFMAX(max, fabs(data_ptr[i]));
|
||||
}
|
||||
|
||||
return max;
|
||||
}
|
||||
|
||||
static double compute_frame_rms(AVFrame *frame, int channel)
|
||||
{
|
||||
double rms_value = 0.0;
|
||||
int c, i;
|
||||
|
||||
if (channel == -1) {
|
||||
for (c = 0; c < frame->channels; c++) {
|
||||
const double *data_ptr = (double *)frame->extended_data[c];
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
rms_value += pow2(data_ptr[i]);
|
||||
}
|
||||
}
|
||||
|
||||
rms_value /= frame->nb_samples * frame->channels;
|
||||
} else {
|
||||
const double *data_ptr = (double *)frame->extended_data[channel];
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
rms_value += pow2(data_ptr[i]);
|
||||
}
|
||||
|
||||
rms_value /= frame->nb_samples;
|
||||
}
|
||||
|
||||
return FFMAX(sqrt(rms_value), DBL_EPSILON);
|
||||
}
|
||||
|
||||
static double get_max_local_gain(DynamicAudioNormalizerContext *s, AVFrame *frame,
|
||||
int channel)
|
||||
{
|
||||
const double maximum_gain = s->peak_value / find_peak_magnitude(frame, channel);
|
||||
const double rms_gain = s->target_rms > DBL_EPSILON ? (s->target_rms / compute_frame_rms(frame, channel)) : DBL_MAX;
|
||||
return bound(s->max_amplification, FFMIN(maximum_gain, rms_gain));
|
||||
}
|
||||
|
||||
static double minimum_filter(cqueue *q)
|
||||
{
|
||||
double min = DBL_MAX;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < cqueue_size(q); i++) {
|
||||
min = FFMIN(min, cqueue_peek(q, i));
|
||||
}
|
||||
|
||||
return min;
|
||||
}
|
||||
|
||||
static double gaussian_filter(DynamicAudioNormalizerContext *s, cqueue *q)
|
||||
{
|
||||
double result = 0.0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < cqueue_size(q); i++) {
|
||||
result += cqueue_peek(q, i) * s->weights[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void update_gain_history(DynamicAudioNormalizerContext *s, int channel,
|
||||
double current_gain_factor)
|
||||
{
|
||||
if (cqueue_empty(s->gain_history_original[channel]) ||
|
||||
cqueue_empty(s->gain_history_minimum[channel])) {
|
||||
const int pre_fill_size = s->filter_size / 2;
|
||||
|
||||
s->prev_amplification_factor[channel] = s->alt_boundary_mode ? current_gain_factor : 1.0;
|
||||
|
||||
while (cqueue_size(s->gain_history_original[channel]) < pre_fill_size) {
|
||||
cqueue_enqueue(s->gain_history_original[channel], s->alt_boundary_mode ? current_gain_factor : 1.0);
|
||||
}
|
||||
|
||||
while (cqueue_size(s->gain_history_minimum[channel]) < pre_fill_size) {
|
||||
cqueue_enqueue(s->gain_history_minimum[channel], s->alt_boundary_mode ? current_gain_factor : 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
cqueue_enqueue(s->gain_history_original[channel], current_gain_factor);
|
||||
|
||||
while (cqueue_size(s->gain_history_original[channel]) >= s->filter_size) {
|
||||
av_assert0(cqueue_size(s->gain_history_original[channel]) == s->filter_size);
|
||||
const double minimum = minimum_filter(s->gain_history_original[channel]);
|
||||
|
||||
cqueue_enqueue(s->gain_history_minimum[channel], minimum);
|
||||
|
||||
cqueue_pop(s->gain_history_original[channel]);
|
||||
}
|
||||
|
||||
while (cqueue_size(s->gain_history_minimum[channel]) >= s->filter_size) {
|
||||
av_assert0(cqueue_size(s->gain_history_minimum[channel]) == s->filter_size);
|
||||
const double smoothed = gaussian_filter(s, s->gain_history_minimum[channel]);
|
||||
|
||||
cqueue_enqueue(s->gain_history_smoothed[channel], smoothed);
|
||||
|
||||
cqueue_pop(s->gain_history_minimum[channel]);
|
||||
}
|
||||
}
|
||||
|
||||
static inline double update_value(double new, double old, double aggressiveness)
|
||||
{
|
||||
av_assert0((aggressiveness >= 0.0) && (aggressiveness <= 1.0));
|
||||
return aggressiveness * new + (1.0 - aggressiveness) * old;
|
||||
}
|
||||
|
||||
static void perform_dc_correction(DynamicAudioNormalizerContext *s, AVFrame *frame)
|
||||
{
|
||||
const double diff = 1.0 / frame->nb_samples;
|
||||
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
|
||||
int c, i;
|
||||
|
||||
for (c = 0; c < s->channels; c++) {
|
||||
double *dst_ptr = (double *)frame->extended_data[c];
|
||||
double current_average_value = 0.0;
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++)
|
||||
current_average_value += dst_ptr[i] * diff;
|
||||
|
||||
const double prev_value = is_first_frame ? current_average_value : s->dc_correction_value[c];
|
||||
s->dc_correction_value[c] = is_first_frame ? current_average_value : update_value(current_average_value, s->dc_correction_value[c], 0.1);
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
dst_ptr[i] -= fade(prev_value, s->dc_correction_value[c], i, s->fade_factors);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static double setup_compress_thresh(double threshold)
|
||||
{
|
||||
if ((threshold > DBL_EPSILON) && (threshold < (1.0 - DBL_EPSILON))) {
|
||||
double current_threshold = threshold;
|
||||
double step_size = 1.0;
|
||||
|
||||
while (step_size > DBL_EPSILON) {
|
||||
while ((current_threshold + step_size > current_threshold) &&
|
||||
(bound(current_threshold + step_size, 1.0) <= threshold)) {
|
||||
current_threshold += step_size;
|
||||
}
|
||||
|
||||
step_size /= 2.0;
|
||||
}
|
||||
|
||||
return current_threshold;
|
||||
} else {
|
||||
return threshold;
|
||||
}
|
||||
}
|
||||
|
||||
static double compute_frame_std_dev(DynamicAudioNormalizerContext *s,
|
||||
AVFrame *frame, int channel)
|
||||
{
|
||||
double variance = 0.0;
|
||||
int i, c;
|
||||
|
||||
if (channel == -1) {
|
||||
for (c = 0; c < s->channels; c++) {
|
||||
const double *data_ptr = (double *)frame->extended_data[c];
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
variance += pow2(data_ptr[i]); // Assume that MEAN is *zero*
|
||||
}
|
||||
}
|
||||
variance /= (s->channels * frame->nb_samples) - 1;
|
||||
} else {
|
||||
const double *data_ptr = (double *)frame->extended_data[channel];
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
variance += pow2(data_ptr[i]); // Assume that MEAN is *zero*
|
||||
}
|
||||
variance /= frame->nb_samples - 1;
|
||||
}
|
||||
|
||||
return FFMAX(sqrt(variance), DBL_EPSILON);
|
||||
}
|
||||
|
||||
static void perform_compression(DynamicAudioNormalizerContext *s, AVFrame *frame)
|
||||
{
|
||||
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
|
||||
int c, i;
|
||||
|
||||
if (s->channels_coupled) {
|
||||
const double standard_deviation = compute_frame_std_dev(s, frame, -1);
|
||||
const double current_threshold = FFMIN(1.0, s->compress_factor * standard_deviation);
|
||||
|
||||
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[0];
|
||||
s->compress_threshold[0] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[0], (1.0/3.0));
|
||||
|
||||
const double prev_actual_thresh = setup_compress_thresh(prev_value);
|
||||
const double curr_actual_thresh = setup_compress_thresh(s->compress_threshold[0]);
|
||||
|
||||
for (c = 0; c < s->channels; c++) {
|
||||
double *const dst_ptr = (double *)frame->extended_data[c];
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, s->fade_factors);
|
||||
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (c = 0; c < s->channels; c++) {
|
||||
const double standard_deviation = compute_frame_std_dev(s, frame, c);
|
||||
const double current_threshold = setup_compress_thresh(FFMIN(1.0, s->compress_factor * standard_deviation));
|
||||
|
||||
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[c];
|
||||
s->compress_threshold[c] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[c], 1.0/3.0);
|
||||
|
||||
const double prev_actual_thresh = setup_compress_thresh(prev_value);
|
||||
const double curr_actual_thresh = setup_compress_thresh(s->compress_threshold[c]);
|
||||
|
||||
double *const dst_ptr = (double *)frame->extended_data[c];
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, s->fade_factors);
|
||||
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void analyze_frame(DynamicAudioNormalizerContext *s, AVFrame *frame)
|
||||
{
|
||||
if (s->dc_correction) {
|
||||
perform_dc_correction(s, frame);
|
||||
}
|
||||
|
||||
if (s->compress_factor > DBL_EPSILON) {
|
||||
perform_compression(s, frame);
|
||||
}
|
||||
|
||||
if (s->channels_coupled) {
|
||||
const double current_gain_factor = get_max_local_gain(s, frame, -1);
|
||||
int c;
|
||||
|
||||
for (c = 0; c < s->channels; c++)
|
||||
update_gain_history(s, c, current_gain_factor);
|
||||
} else {
|
||||
int c;
|
||||
|
||||
for (c = 0; c < s->channels; c++)
|
||||
update_gain_history(s, c, get_max_local_gain(s, frame, c));
|
||||
}
|
||||
}
|
||||
|
||||
static void amplify_frame(DynamicAudioNormalizerContext *s, AVFrame *frame)
|
||||
{
|
||||
int c, i;
|
||||
|
||||
for (c = 0; c < s->channels; c++) {
|
||||
double *dst_ptr = (double *)frame->extended_data[c];
|
||||
double current_amplification_factor;
|
||||
|
||||
cqueue_dequeue(s->gain_history_smoothed[c], ¤t_amplification_factor);
|
||||
|
||||
for (i = 0; i < frame->nb_samples; i++) {
|
||||
const double amplification_factor = fade(s->prev_amplification_factor[c],
|
||||
current_amplification_factor, i,
|
||||
s->fade_factors);
|
||||
|
||||
dst_ptr[i] *= amplification_factor;
|
||||
|
||||
if (fabs(dst_ptr[i]) > s->peak_value)
|
||||
dst_ptr[i] = copysign(s->peak_value, dst_ptr[i]);
|
||||
}
|
||||
|
||||
s->prev_amplification_factor[c] = current_amplification_factor;
|
||||
}
|
||||
}
|
||||
|
||||
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
DynamicAudioNormalizerContext *s = ctx->priv;
|
||||
AVFilterLink *outlink = inlink->dst->outputs[0];
|
||||
int ret = 0;
|
||||
|
||||
if (!cqueue_empty(s->gain_history_smoothed[0])) {
|
||||
AVFrame *out = ff_bufqueue_get(&s->queue);
|
||||
|
||||
amplify_frame(s, out);
|
||||
ret = ff_filter_frame(outlink, out);
|
||||
}
|
||||
|
||||
analyze_frame(s, in);
|
||||
ff_bufqueue_add(ctx, &s->queue, in);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int flush_buffer(DynamicAudioNormalizerContext *s, AVFilterLink *inlink,
|
||||
AVFilterLink *outlink)
|
||||
{
|
||||
AVFrame *out = ff_get_audio_buffer(outlink, s->frame_len);
|
||||
int c, i;
|
||||
|
||||
if (!out)
|
||||
return AVERROR(ENOMEM);
|
||||
|
||||
for (c = 0; c < s->channels; c++) {
|
||||
double *dst_ptr = (double *)out->extended_data[c];
|
||||
|
||||
for (i = 0; i < out->nb_samples; i++) {
|
||||
dst_ptr[i] = s->alt_boundary_mode ? DBL_EPSILON : ((s->target_rms > DBL_EPSILON) ? FFMIN(s->peak_value, s->target_rms) : s->peak_value);
|
||||
if (s->dc_correction) {
|
||||
dst_ptr[i] *= ((i % 2) == 1) ? -1 : 1;
|
||||
dst_ptr[i] += s->dc_correction_value[c];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
s->delay--;
|
||||
return filter_frame(inlink, out);
|
||||
}
|
||||
|
||||
static int request_frame(AVFilterLink *outlink)
|
||||
{
|
||||
AVFilterContext *ctx = outlink->src;
|
||||
DynamicAudioNormalizerContext *s = ctx->priv;
|
||||
int ret = 0;
|
||||
|
||||
ret = ff_request_frame(ctx->inputs[0]);
|
||||
|
||||
if (ret == AVERROR_EOF && !ctx->is_disabled && s->delay)
|
||||
ret = flush_buffer(s, ctx->inputs[0], outlink);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static av_cold void uninit(AVFilterContext *ctx)
|
||||
{
|
||||
DynamicAudioNormalizerContext *s = ctx->priv;
|
||||
int c;
|
||||
|
||||
av_freep(&s->prev_amplification_factor);
|
||||
av_freep(&s->dc_correction_value);
|
||||
av_freep(&s->compress_threshold);
|
||||
av_freep(&s->fade_factors[0]);
|
||||
av_freep(&s->fade_factors[1]);
|
||||
|
||||
for (c = 0; c < s->channels; c++) {
|
||||
cqueue_free(s->gain_history_original[c]);
|
||||
cqueue_free(s->gain_history_minimum[c]);
|
||||
cqueue_free(s->gain_history_smoothed[c]);
|
||||
}
|
||||
|
||||
av_freep(&s->gain_history_original);
|
||||
av_freep(&s->gain_history_minimum);
|
||||
av_freep(&s->gain_history_smoothed);
|
||||
|
||||
av_freep(&s->weights);
|
||||
|
||||
ff_bufqueue_discard_all(&s->queue);
|
||||
}
|
||||
|
||||
static const AVFilterPad avfilter_af_dynaudnorm_inputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_AUDIO,
|
||||
.filter_frame = filter_frame,
|
||||
.config_props = config_input,
|
||||
.needs_writable = 1,
|
||||
},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
static const AVFilterPad avfilter_af_dynaudnorm_outputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_AUDIO,
|
||||
.config_props = config_output,
|
||||
.request_frame = request_frame,
|
||||
},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
AVFilter ff_af_dynaudnorm = {
|
||||
.name = "dynaudnorm",
|
||||
.description = NULL_IF_CONFIG_SMALL("Dynamic Audio Normalizer."),
|
||||
.query_formats = query_formats,
|
||||
.priv_size = sizeof(DynamicAudioNormalizerContext),
|
||||
.init = init,
|
||||
.uninit = uninit,
|
||||
.inputs = avfilter_af_dynaudnorm_inputs,
|
||||
.outputs = avfilter_af_dynaudnorm_outputs,
|
||||
.priv_class = &dynaudnorm_class,
|
||||
};
|
@ -83,6 +83,7 @@ void avfilter_register_all(void)
|
||||
REGISTER_FILTER(CHORUS, chorus, af);
|
||||
REGISTER_FILTER(COMPAND, compand, af);
|
||||
REGISTER_FILTER(DCSHIFT, dcshift, af);
|
||||
REGISTER_FILTER(DYNAUDNORM, dynaudnorm, af);
|
||||
REGISTER_FILTER(EARWAX, earwax, af);
|
||||
REGISTER_FILTER(EBUR128, ebur128, af);
|
||||
REGISTER_FILTER(EQUALIZER, equalizer, af);
|
||||
|
Loading…
Reference in New Issue
Block a user