1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

qcelpdec: K&R formatting cosmetics

Signed-off-by: Diego Biurrun <diego@biurrun.de>
This commit is contained in:
Asen Lekov 2011-12-19 01:32:54 +02:00 committed by Diego Biurrun
parent 2fd291846b
commit 25c2d76b68

View File

@ -44,8 +44,7 @@
#undef NDEBUG #undef NDEBUG
#include <assert.h> #include <assert.h>
typedef enum typedef enum {
{
I_F_Q = -1, /**< insufficient frame quality */ I_F_Q = -1, /**< insufficient frame quality */
SILENCE, SILENCE,
RATE_OCTAVE, RATE_OCTAVE,
@ -54,8 +53,7 @@ typedef enum
RATE_FULL RATE_FULL
} qcelp_packet_rate; } qcelp_packet_rate;
typedef struct typedef struct {
{
AVFrame avframe; AVFrame avframe;
GetBitContext gb; GetBitContext gb;
qcelp_packet_rate bitrate; qcelp_packet_rate bitrate;
@ -95,8 +93,8 @@ static av_cold int qcelp_decode_init(AVCodecContext *avctx)
avctx->sample_fmt = AV_SAMPLE_FMT_FLT; avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
for(i=0; i<10; i++) for (i = 0; i < 10; i++)
q->prev_lspf[i] = (i+1)/11.; q->prev_lspf[i] = (i + 1) / 11.;
avcodec_get_frame_defaults(&q->avframe); avcodec_get_frame_defaults(&q->avframe);
avctx->coded_frame = &q->avframe; avctx->coded_frame = &q->avframe;
@ -129,12 +127,12 @@ static int decode_lspf(QCELPContext *q, float *lspf)
if (q->bitrate == RATE_OCTAVE) { if (q->bitrate == RATE_OCTAVE) {
q->octave_count++; q->octave_count++;
for (i=0; i<10; i++) { for (i = 0; i < 10; i++) {
q->predictor_lspf[i] = q->predictor_lspf[i] =
lspf[i] = (q->frame.lspv[i] ? QCELP_LSP_SPREAD_FACTOR lspf[i] = (q->frame.lspv[i] ? QCELP_LSP_SPREAD_FACTOR
: -QCELP_LSP_SPREAD_FACTOR) : -QCELP_LSP_SPREAD_FACTOR) +
+ predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR +
+ (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11); (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
} }
smooth = q->octave_count < 10 ? .875 : 0.1; smooth = q->octave_count < 10 ? .875 : 0.1;
} else { } else {
@ -142,49 +140,49 @@ static int decode_lspf(QCELPContext *q, float *lspf)
assert(q->bitrate == I_F_Q); assert(q->bitrate == I_F_Q);
if(q->erasure_count > 1) if (q->erasure_count > 1)
erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7; erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
for(i = 0; i < 10; i++) { for (i = 0; i < 10; i++) {
q->predictor_lspf[i] = q->predictor_lspf[i] =
lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11 lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
+ erasure_coeff * predictors[i]; erasure_coeff * predictors[i];
} }
smooth = 0.125; smooth = 0.125;
} }
// Check the stability of the LSP frequencies. // Check the stability of the LSP frequencies.
lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR); lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
for(i=1; i<10; i++) for (i = 1; i < 10; i++)
lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR); lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR); lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
for(i=9; i>0; i--) for (i = 9; i > 0; i--)
lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR); lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
// Low-pass filter the LSP frequencies. // Low-pass filter the LSP frequencies.
ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10); ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
} else { } else {
q->octave_count = 0; q->octave_count = 0;
tmp_lspf = 0.; tmp_lspf = 0.;
for (i = 0; i < 5; i++) { for (i = 0; i < 5; i++) {
lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001; lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001; lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
} }
// Check for badly received packets. // Check for badly received packets.
if (q->bitrate == RATE_QUARTER) { if (q->bitrate == RATE_QUARTER) {
if(lspf[9] <= .70 || lspf[9] >= .97) if (lspf[9] <= .70 || lspf[9] >= .97)
return -1; return -1;
for(i=3; i<10; i++) for (i = 3; i < 10; i++)
if(fabs(lspf[i] - lspf[i-2]) < .08) if (fabs(lspf[i] - lspf[i - 2]) < .08)
return -1; return -1;
} else { } else {
if(lspf[9] <= .66 || lspf[9] >= .985) if (lspf[9] <= .66 || lspf[9] >= .985)
return -1; return -1;
for(i=4; i<10; i++) for (i = 4; i < 10; i++)
if (fabs(lspf[i] - lspf[i-4]) < .0931) if (fabs(lspf[i] - lspf[i - 4]) < .0931)
return -1; return -1;
} }
} }
@ -199,8 +197,8 @@ static int decode_lspf(QCELPContext *q, float *lspf)
* *
* TIA/EIA/IS-733 2.4.6.2 * TIA/EIA/IS-733 2.4.6.2
*/ */
static void decode_gain_and_index(QCELPContext *q, static void decode_gain_and_index(QCELPContext *q, float *gain)
float *gain) { {
int i, subframes_count, g1[16]; int i, subframes_count, g1[16];
float slope; float slope;
@ -210,38 +208,38 @@ static void decode_gain_and_index(QCELPContext *q,
case RATE_HALF: subframes_count = 4; break; case RATE_HALF: subframes_count = 4; break;
default: subframes_count = 5; default: subframes_count = 5;
} }
for(i = 0; i < subframes_count; i++) { for (i = 0; i < subframes_count; i++) {
g1[i] = 4 * q->frame.cbgain[i]; g1[i] = 4 * q->frame.cbgain[i];
if (q->bitrate == RATE_FULL && !((i+1) & 3)) { if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32); g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
} }
gain[i] = qcelp_g12ga[g1[i]]; gain[i] = qcelp_g12ga[g1[i]];
if (q->frame.cbsign[i]) { if (q->frame.cbsign[i]) {
gain[i] = -gain[i]; gain[i] = -gain[i];
q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127; q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
} }
} }
q->prev_g1[0] = g1[i-2]; q->prev_g1[0] = g1[i - 2];
q->prev_g1[1] = g1[i-1]; q->prev_g1[1] = g1[i - 1];
q->last_codebook_gain = qcelp_g12ga[g1[i-1]]; q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
if (q->bitrate == RATE_QUARTER) { if (q->bitrate == RATE_QUARTER) {
// Provide smoothing of the unvoiced excitation energy. // Provide smoothing of the unvoiced excitation energy.
gain[7] = gain[4]; gain[7] = gain[4];
gain[6] = 0.4*gain[3] + 0.6*gain[4]; gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
gain[5] = gain[3]; gain[5] = gain[3];
gain[4] = 0.8*gain[2] + 0.2*gain[3]; gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
gain[3] = 0.2*gain[1] + 0.8*gain[2]; gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
gain[2] = gain[1]; gain[2] = gain[1];
gain[1] = 0.6*gain[0] + 0.4*gain[1]; gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
} }
} else if (q->bitrate != SILENCE) { } else if (q->bitrate != SILENCE) {
if (q->bitrate == RATE_OCTAVE) { if (q->bitrate == RATE_OCTAVE) {
g1[0] = 2 * q->frame.cbgain[0] g1[0] = 2 * q->frame.cbgain[0] +
+ av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54); av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
subframes_count = 8; subframes_count = 8;
} else { } else {
assert(q->bitrate == I_F_Q); assert(q->bitrate == I_F_Q);
@ -253,16 +251,16 @@ static void decode_gain_and_index(QCELPContext *q,
case 3 : g1[0] -= 2; break; case 3 : g1[0] -= 2; break;
default: g1[0] -= 6; default: g1[0] -= 6;
} }
if(g1[0] < 0) if (g1[0] < 0)
g1[0] = 0; g1[0] = 0;
subframes_count = 4; subframes_count = 4;
} }
// This interpolation is done to produce smoother background noise. // This interpolation is done to produce smoother background noise.
slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count; slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
for(i=1; i<=subframes_count; i++) for (i = 1; i <= subframes_count; i++)
gain[i-1] = q->last_codebook_gain + slope * i; gain[i - 1] = q->last_codebook_gain + slope * i;
q->last_codebook_gain = gain[i-2]; q->last_codebook_gain = gain[i - 2];
q->prev_g1[0] = q->prev_g1[1]; q->prev_g1[0] = q->prev_g1[1];
q->prev_g1[1] = g1[0]; q->prev_g1[1] = g1[0];
} }
@ -279,13 +277,13 @@ static void decode_gain_and_index(QCELPContext *q,
*/ */
static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain) static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
{ {
int i, diff, prev_diff=0; int i, diff, prev_diff = 0;
for(i=1; i<5; i++) { for (i = 1; i < 5; i++) {
diff = cbgain[i] - cbgain[i-1]; diff = cbgain[i] - cbgain[i-1];
if(FFABS(diff) > 10) if (FFABS(diff) > 10)
return -1; return -1;
else if(FFABS(diff - prev_diff) > 12) else if (FFABS(diff - prev_diff) > 12)
return -1; return -1;
prev_diff = diff; prev_diff = diff;
} }
@ -325,7 +323,7 @@ static void compute_svector(QCELPContext *q, const float *gain,
for (i = 0; i < 16; i++) { for (i = 0; i < 16; i++) {
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO; tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
cindex = -q->frame.cindex[i]; cindex = -q->frame.cindex[i];
for(j=0; j<10; j++) for (j = 0; j < 10; j++)
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127]; *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
} }
break; break;
@ -338,30 +336,31 @@ static void compute_svector(QCELPContext *q, const float *gain,
} }
break; break;
case RATE_QUARTER: case RATE_QUARTER:
cbseed = (0x0003 & q->frame.lspv[4])<<14 | cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
(0x003F & q->frame.lspv[3])<< 8 | (0x003F & q->frame.lspv[3]) << 8 |
(0x0060 & q->frame.lspv[2])<< 1 | (0x0060 & q->frame.lspv[2]) << 1 |
(0x0007 & q->frame.lspv[1])<< 3 | (0x0007 & q->frame.lspv[1]) << 3 |
(0x0038 & q->frame.lspv[0])>> 3 ; (0x0038 & q->frame.lspv[0]) >> 3;
rnd = q->rnd_fir_filter_mem + 20; rnd = q->rnd_fir_filter_mem + 20;
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0); tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
for (k = 0; k < 20; k++) { for (k = 0; k < 20; k++) {
cbseed = 521 * cbseed + 259; cbseed = 521 * cbseed + 259;
*rnd = (int16_t)cbseed; *rnd = (int16_t) cbseed;
// FIR filter // FIR filter
fir_filter_value = 0.0; fir_filter_value = 0.0;
for(j=0; j<10; j++) for (j = 0; j < 10; j++)
fir_filter_value += qcelp_rnd_fir_coefs[j ] fir_filter_value += qcelp_rnd_fir_coefs[j] *
* (rnd[-j ] + rnd[-20+j]); (rnd[-j] + rnd[-20+j]);
fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10]; fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
*cdn_vector++ = tmp_gain * fir_filter_value; *cdn_vector++ = tmp_gain * fir_filter_value;
rnd++; rnd++;
} }
} }
memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float)); memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
20 * sizeof(float));
break; break;
case RATE_OCTAVE: case RATE_OCTAVE:
cbseed = q->first16bits; cbseed = q->first16bits;
@ -369,7 +368,7 @@ static void compute_svector(QCELPContext *q, const float *gain,
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0); tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
for (j = 0; j < 20; j++) { for (j = 0; j < 20; j++) {
cbseed = 521 * cbseed + 259; cbseed = 521 * cbseed + 259;
*cdn_vector++ = tmp_gain * (int16_t)cbseed; *cdn_vector++ = tmp_gain * (int16_t) cbseed;
} }
} }
break; break;
@ -377,7 +376,7 @@ static void compute_svector(QCELPContext *q, const float *gain,
cbseed = -44; // random codebook index cbseed = -44; // random codebook index
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO; tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
for(j=0; j<40; j++) for (j = 0; j < 40; j++)
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127]; *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
} }
break; break;
@ -396,8 +395,7 @@ static void compute_svector(QCELPContext *q, const float *gain,
* *
* TIA/EIA/IS-733 2.4.8.3, 2.4.8.6 * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
*/ */
static void apply_gain_ctrl(float *v_out, const float *v_ref, static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
const float *v_in)
{ {
int i; int i;
@ -440,9 +438,9 @@ static const float *do_pitchfilter(float memory[303], const float v_in[160],
v_lag = memory + 143 + 40 * i - lag[i]; v_lag = memory + 143 + 40 * i - lag[i];
for (v_len = v_in + 40; v_in < v_len; v_in++) { for (v_len = v_in + 40; v_in < v_len; v_in++) {
if (pfrac[i]) { // If it is a fractional lag... if (pfrac[i]) { // If it is a fractional lag...
for(j=0, *v_out=0.; j<4; j++) for (j = 0, *v_out = 0.; j < 4; j++)
*v_out += qcelp_hammsinc_table[j] * (v_lag[j-4] + v_lag[3-j]); *v_out += qcelp_hammsinc_table[j] * (v_lag[j - 4] + v_lag[3 - j]);
}else } else
*v_out = *v_lag; *v_out = *v_lag;
*v_out = *v_in + gain[i] * *v_out; *v_out = *v_in + gain[i] * *v_out;
@ -473,12 +471,10 @@ static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
int i; int i;
const float *v_synthesis_filtered, *v_pre_filtered; const float *v_synthesis_filtered, *v_pre_filtered;
if(q->bitrate >= RATE_HALF || if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
q->bitrate == SILENCE ||
(q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) { (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
if(q->bitrate >= RATE_HALF) { if (q->bitrate >= RATE_HALF) {
// Compute gain & lag for the whole frame. // Compute gain & lag for the whole frame.
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0; q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
@ -497,7 +493,7 @@ static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
assert(q->bitrate == SILENCE); assert(q->bitrate == SILENCE);
max_pitch_gain = 1.0; max_pitch_gain = 1.0;
} }
for(i=0; i<4; i++) for (i = 0; i < 4; i++)
q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain); q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac)); memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
@ -509,7 +505,7 @@ static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
q->pitch_lag, q->frame.pfrac); q->pitch_lag, q->frame.pfrac);
// pitch prefilter update // pitch prefilter update
for(i=0; i<4; i++) for (i = 0; i < 4; i++)
q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0); q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem, v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
@ -519,8 +515,7 @@ static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered); apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
} else { } else {
memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17, memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17, 143 * sizeof(float));
143 * sizeof(float));
memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float)); memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
memset(q->pitch_gain, 0, sizeof(q->pitch_gain)); memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
memset(q->pitch_lag, 0, sizeof(q->pitch_lag)); memset(q->pitch_lag, 0, sizeof(q->pitch_lag));
@ -545,7 +540,7 @@ static void lspf2lpc(const float *lspf, float *lpc)
double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF; double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
int i; int i;
for (i=0; i<10; i++) for (i = 0; i < 10; i++)
lsp[i] = cos(M_PI * lspf[i]); lsp[i] = cos(M_PI * lspf[i]);
ff_acelp_lspd2lpc(lsp, lpc, 5); ff_acelp_lspd2lpc(lsp, lpc, 5);
@ -573,9 +568,9 @@ static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
float interpolated_lspf[10]; float interpolated_lspf[10];
float weight; float weight;
if(q->bitrate >= RATE_QUARTER) if (q->bitrate >= RATE_QUARTER)
weight = 0.25 * (subframe_num + 1); weight = 0.25 * (subframe_num + 1);
else if(q->bitrate == RATE_OCTAVE && !subframe_num) else if (q->bitrate == RATE_OCTAVE && !subframe_num)
weight = 0.625; weight = 0.625;
else else
weight = 1.0; weight = 1.0;
@ -584,10 +579,10 @@ static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf, ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
weight, 1.0 - weight, 10); weight, 1.0 - weight, 10);
lspf2lpc(interpolated_lspf, lpc); lspf2lpc(interpolated_lspf, lpc);
}else if(q->bitrate >= RATE_QUARTER || } else if (q->bitrate >= RATE_QUARTER ||
(q->bitrate == I_F_Q && !subframe_num)) (q->bitrate == I_F_Q && !subframe_num))
lspf2lpc(curr_lspf, lpc); lspf2lpc(curr_lspf, lpc);
else if(q->bitrate == SILENCE && !subframe_num) else if (q->bitrate == SILENCE && !subframe_num)
lspf2lpc(q->prev_lspf, lpc); lspf2lpc(q->prev_lspf, lpc);
} }
@ -616,7 +611,8 @@ static qcelp_packet_rate buf_size2bitrate(const int buf_size)
* *
* TIA/EIA/IS-733 2.4.8.7.1 * TIA/EIA/IS-733 2.4.8.7.1
*/ */
static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx, const int buf_size, static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
const int buf_size,
const uint8_t **buf) const uint8_t **buf)
{ {
qcelp_packet_rate bitrate; qcelp_packet_rate bitrate;
@ -639,7 +635,7 @@ static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx, const int buf_
} else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) { } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
av_log(avctx, AV_LOG_WARNING, av_log(avctx, AV_LOG_WARNING,
"Bitrate byte is missing, guessing the bitrate from packet size.\n"); "Bitrate byte is missing, guessing the bitrate from packet size.\n");
}else } else
return I_F_Q; return I_F_Q;
if (bitrate == SILENCE) { if (bitrate == SILENCE) {
@ -652,8 +648,8 @@ static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx, const int buf_
static void warn_insufficient_frame_quality(AVCodecContext *avctx, static void warn_insufficient_frame_quality(AVCodecContext *avctx,
const char *message) const char *message)
{ {
av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n", avctx->frame_number, av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n",
message); avctx->frame_number, message);
} }
static void postfilter(QCELPContext *q, float *samples, float *lpc) static void postfilter(QCELPContext *q, float *samples, float *lpc)
@ -682,7 +678,8 @@ static void postfilter(QCELPContext *q, float *samples, float *lpc)
ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160); ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
ff_adaptive_gain_control(samples, pole_out + 10, ff_adaptive_gain_control(samples, pole_out + 10,
ff_dot_productf(q->formant_mem + 10, q->formant_mem + 10, 160), ff_dot_productf(q->formant_mem + 10,
q->formant_mem + 10, 160),
160, 0.9375, &q->postfilter_agc_mem); 160, 0.9375, &q->postfilter_agc_mem);
} }
@ -711,7 +708,7 @@ static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
goto erasure; goto erasure;
} }
if(q->bitrate == RATE_OCTAVE && if (q->bitrate == RATE_OCTAVE &&
(q->first16bits = AV_RB16(buf)) == 0xFFFF) { (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on."); warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
goto erasure; goto erasure;
@ -719,15 +716,15 @@ static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
if (q->bitrate > SILENCE) { if (q->bitrate > SILENCE) {
const QCELPBitmap *bitmaps = qcelp_unpacking_bitmaps_per_rate[q->bitrate]; const QCELPBitmap *bitmaps = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
+ qcelp_unpacking_bitmaps_lengths[q->bitrate]; qcelp_unpacking_bitmaps_lengths[q->bitrate];
uint8_t *unpacked_data = (uint8_t *)&q->frame; uint8_t *unpacked_data = (uint8_t *)&q->frame;
init_get_bits(&q->gb, buf, 8*buf_size); init_get_bits(&q->gb, buf, 8 * buf_size);
memset(&q->frame, 0, sizeof(QCELPFrame)); memset(&q->frame, 0, sizeof(QCELPFrame));
for(; bitmaps < bitmaps_end; bitmaps++) for (; bitmaps < bitmaps_end; bitmaps++)
unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos; unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
// Check for erasures/blanks on rates 1, 1/4 and 1/8. // Check for erasures/blanks on rates 1, 1/4 and 1/8.
@ -735,7 +732,7 @@ static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area."); warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
goto erasure; goto erasure;
} }
if(q->bitrate == RATE_QUARTER && if (q->bitrate == RATE_QUARTER &&
codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) { codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed."); warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
goto erasure; goto erasure;
@ -759,7 +756,6 @@ static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
goto erasure; goto erasure;
} }
apply_pitch_filters(q, outbuffer); apply_pitch_filters(q, outbuffer);
if (q->bitrate == I_F_Q) { if (q->bitrate == I_F_Q) {
@ -770,14 +766,13 @@ erasure:
compute_svector(q, gain, outbuffer); compute_svector(q, gain, outbuffer);
decode_lspf(q, quantized_lspf); decode_lspf(q, quantized_lspf);
apply_pitch_filters(q, outbuffer); apply_pitch_filters(q, outbuffer);
}else } else
q->erasure_count = 0; q->erasure_count = 0;
formant_mem = q->formant_mem + 10; formant_mem = q->formant_mem + 10;
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
interpolate_lpc(q, quantized_lspf, lpc, i); interpolate_lpc(q, quantized_lspf, lpc, i);
ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40, ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40, 10);
10);
formant_mem += 40; formant_mem += 40;
} }
@ -795,8 +790,7 @@ erasure:
return buf_size; return buf_size;
} }
AVCodec ff_qcelp_decoder = AVCodec ff_qcelp_decoder = {
{
.name = "qcelp", .name = "qcelp",
.type = AVMEDIA_TYPE_AUDIO, .type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_QCELP, .id = CODEC_ID_QCELP,