mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-28 20:53:54 +02:00
dnn_backend_openvino.c: separate function execute_model_ov
function fill_model_input_ov and infer_completion_callback are extracted, it will help the async execution for reuse. Signed-off-by: Xie, Lin <lin.xie@intel.com> Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
6506ab8b03
commit
2b177033bb
@ -50,6 +50,21 @@ typedef struct OVModel{
|
||||
ie_infer_request_t *infer_request;
|
||||
} OVModel;
|
||||
|
||||
typedef struct TaskItem {
|
||||
OVModel *ov_model;
|
||||
const char *input_name;
|
||||
AVFrame *in_frame;
|
||||
const char *output_name;
|
||||
AVFrame *out_frame;
|
||||
int do_ioproc;
|
||||
int done;
|
||||
} TaskItem;
|
||||
|
||||
typedef struct RequestItem {
|
||||
ie_infer_request_t *infer_request;
|
||||
TaskItem *task;
|
||||
} RequestItem;
|
||||
|
||||
#define APPEND_STRING(generated_string, iterate_string) \
|
||||
generated_string = generated_string ? av_asprintf("%s %s", generated_string, iterate_string) : \
|
||||
av_asprintf("%s", iterate_string);
|
||||
@ -63,10 +78,6 @@ static const AVOption dnn_openvino_options[] = {
|
||||
|
||||
AVFILTER_DEFINE_CLASS(dnn_openvino);
|
||||
|
||||
static DNNReturnType execute_model_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
|
||||
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
|
||||
int do_ioproc);
|
||||
|
||||
static DNNDataType precision_to_datatype(precision_e precision)
|
||||
{
|
||||
switch (precision)
|
||||
@ -79,6 +90,136 @@ static DNNDataType precision_to_datatype(precision_e precision)
|
||||
}
|
||||
}
|
||||
|
||||
static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, RequestItem *request)
|
||||
{
|
||||
dimensions_t dims;
|
||||
precision_e precision;
|
||||
ie_blob_buffer_t blob_buffer;
|
||||
OVContext *ctx = &ov_model->ctx;
|
||||
IEStatusCode status;
|
||||
DNNData input;
|
||||
ie_blob_t *input_blob = NULL;
|
||||
|
||||
status = ie_infer_request_get_blob(request->infer_request, task->input_name, &input_blob);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob with name %s\n", task->input_name);
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status |= ie_blob_get_dims(input_blob, &dims);
|
||||
status |= ie_blob_get_precision(input_blob, &precision);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob dims/precision\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status = ie_blob_get_buffer(input_blob, &blob_buffer);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob buffer\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
input.height = dims.dims[2];
|
||||
input.width = dims.dims[3];
|
||||
input.channels = dims.dims[1];
|
||||
input.data = blob_buffer.buffer;
|
||||
input.dt = precision_to_datatype(precision);
|
||||
if (task->do_ioproc) {
|
||||
if (ov_model->model->pre_proc != NULL) {
|
||||
ov_model->model->pre_proc(task->in_frame, &input, ov_model->model->userdata);
|
||||
} else {
|
||||
proc_from_frame_to_dnn(task->in_frame, &input, ctx);
|
||||
}
|
||||
}
|
||||
ie_blob_free(&input_blob);
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static void infer_completion_callback(void *args)
|
||||
{
|
||||
dimensions_t dims;
|
||||
precision_e precision;
|
||||
IEStatusCode status;
|
||||
RequestItem *request = args;
|
||||
TaskItem *task = request->task;
|
||||
ie_blob_t *output_blob = NULL;
|
||||
ie_blob_buffer_t blob_buffer;
|
||||
DNNData output;
|
||||
OVContext *ctx = &task->ov_model->ctx;
|
||||
|
||||
status = ie_infer_request_get_blob(request->infer_request, task->output_name, &output_blob);
|
||||
if (status != OK) {
|
||||
//incorrect output name
|
||||
char *model_output_name = NULL;
|
||||
char *all_output_names = NULL;
|
||||
size_t model_output_count = 0;
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get model output data\n");
|
||||
status = ie_network_get_outputs_number(task->ov_model->network, &model_output_count);
|
||||
for (size_t i = 0; i < model_output_count; i++) {
|
||||
status = ie_network_get_output_name(task->ov_model->network, i, &model_output_name);
|
||||
APPEND_STRING(all_output_names, model_output_name)
|
||||
}
|
||||
av_log(ctx, AV_LOG_ERROR,
|
||||
"output \"%s\" may not correct, all output(s) are: \"%s\"\n",
|
||||
task->output_name, all_output_names);
|
||||
return;
|
||||
}
|
||||
|
||||
status = ie_blob_get_buffer(output_blob, &blob_buffer);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to access output memory\n");
|
||||
return;
|
||||
}
|
||||
|
||||
status |= ie_blob_get_dims(output_blob, &dims);
|
||||
status |= ie_blob_get_precision(output_blob, &precision);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get dims or precision of output\n");
|
||||
return;
|
||||
}
|
||||
|
||||
output.channels = dims.dims[1];
|
||||
output.height = dims.dims[2];
|
||||
output.width = dims.dims[3];
|
||||
output.dt = precision_to_datatype(precision);
|
||||
output.data = blob_buffer.buffer;
|
||||
if (task->do_ioproc) {
|
||||
if (task->ov_model->model->post_proc != NULL) {
|
||||
task->ov_model->model->post_proc(task->out_frame, &output, task->ov_model->model->userdata);
|
||||
} else {
|
||||
proc_from_dnn_to_frame(task->out_frame, &output, ctx);
|
||||
}
|
||||
} else {
|
||||
task->out_frame->width = output.width;
|
||||
task->out_frame->height = output.height;
|
||||
}
|
||||
ie_blob_free(&output_blob);
|
||||
task->done = 1;
|
||||
}
|
||||
|
||||
static DNNReturnType execute_model_ov(TaskItem *task, RequestItem *request)
|
||||
{
|
||||
IEStatusCode status;
|
||||
OVContext *ctx = &task->ov_model->ctx;
|
||||
|
||||
DNNReturnType ret = fill_model_input_ov(task->ov_model, task, request);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
status = ie_infer_request_infer(request->infer_request);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
request->task = task;
|
||||
infer_completion_callback(request);
|
||||
|
||||
return task->done ? DNN_SUCCESS : DNN_ERROR;
|
||||
}
|
||||
|
||||
static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input_name)
|
||||
{
|
||||
OVModel *ov_model = (OVModel *)model;
|
||||
@ -142,6 +283,8 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu
|
||||
DNNReturnType ret;
|
||||
OVModel *ov_model = (OVModel *)model;
|
||||
OVContext *ctx = &ov_model->ctx;
|
||||
TaskItem task;
|
||||
RequestItem request;
|
||||
AVFrame *in_frame = av_frame_alloc();
|
||||
AVFrame *out_frame = NULL;
|
||||
|
||||
@ -158,7 +301,17 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu
|
||||
in_frame->width = input_width;
|
||||
in_frame->height = input_height;
|
||||
|
||||
ret = execute_model_ov(ov_model->model, input_name, in_frame, &output_name, 1, out_frame, 0);
|
||||
task.done = 0;
|
||||
task.do_ioproc = 0;
|
||||
task.input_name = input_name;
|
||||
task.in_frame = in_frame;
|
||||
task.output_name = output_name;
|
||||
task.out_frame = out_frame;
|
||||
task.ov_model = ov_model;
|
||||
|
||||
request.infer_request = ov_model->infer_request;
|
||||
|
||||
ret = execute_model_ov(&task, &request);
|
||||
*output_width = out_frame->width;
|
||||
*output_height = out_frame->height;
|
||||
|
||||
@ -249,125 +402,13 @@ err:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static DNNReturnType execute_model_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
|
||||
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
|
||||
int do_ioproc)
|
||||
{
|
||||
char *model_output_name = NULL;
|
||||
char *all_output_names = NULL;
|
||||
dimensions_t dims;
|
||||
precision_e precision;
|
||||
ie_blob_buffer_t blob_buffer;
|
||||
OVModel *ov_model = (OVModel *)model->model;
|
||||
OVContext *ctx = &ov_model->ctx;
|
||||
IEStatusCode status;
|
||||
size_t model_output_count = 0;
|
||||
DNNData input, output;
|
||||
ie_blob_t *input_blob = NULL;
|
||||
|
||||
status = ie_infer_request_get_blob(ov_model->infer_request, input_name, &input_blob);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status |= ie_blob_get_dims(input_blob, &dims);
|
||||
status |= ie_blob_get_precision(input_blob, &precision);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob dims/precision\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status = ie_blob_get_buffer(input_blob, &blob_buffer);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob buffer\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
input.height = dims.dims[2];
|
||||
input.width = dims.dims[3];
|
||||
input.channels = dims.dims[1];
|
||||
input.data = blob_buffer.buffer;
|
||||
input.dt = precision_to_datatype(precision);
|
||||
if (do_ioproc) {
|
||||
if (ov_model->model->pre_proc != NULL) {
|
||||
ov_model->model->pre_proc(in_frame, &input, ov_model->model->userdata);
|
||||
} else {
|
||||
proc_from_frame_to_dnn(in_frame, &input, ctx);
|
||||
}
|
||||
}
|
||||
ie_blob_free(&input_blob);
|
||||
|
||||
if (nb_output != 1) {
|
||||
// currently, the filter does not need multiple outputs,
|
||||
// so we just pending the support until we really need it.
|
||||
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status = ie_infer_request_infer(ov_model->infer_request);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < nb_output; ++i) {
|
||||
const char *output_name = output_names[i];
|
||||
ie_blob_t *output_blob = NULL;
|
||||
status = ie_infer_request_get_blob(ov_model->infer_request, output_name, &output_blob);
|
||||
if (status != OK) {
|
||||
//incorrect output name
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get model output data\n");
|
||||
status = ie_network_get_outputs_number(ov_model->network, &model_output_count);
|
||||
for (size_t i = 0; i < model_output_count; i++) {
|
||||
status = ie_network_get_output_name(ov_model->network, i, &model_output_name);
|
||||
APPEND_STRING(all_output_names, model_output_name)
|
||||
}
|
||||
av_log(ctx, AV_LOG_ERROR,
|
||||
"output \"%s\" may not correct, all output(s) are: \"%s\"\n",
|
||||
output_name, all_output_names);
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status = ie_blob_get_buffer(output_blob, &blob_buffer);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to access output memory\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status |= ie_blob_get_dims(output_blob, &dims);
|
||||
status |= ie_blob_get_precision(output_blob, &precision);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get dims or precision of output\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
output.channels = dims.dims[1];
|
||||
output.height = dims.dims[2];
|
||||
output.width = dims.dims[3];
|
||||
output.dt = precision_to_datatype(precision);
|
||||
output.data = blob_buffer.buffer;
|
||||
if (do_ioproc) {
|
||||
if (ov_model->model->post_proc != NULL) {
|
||||
ov_model->model->post_proc(out_frame, &output, ov_model->model->userdata);
|
||||
} else {
|
||||
proc_from_dnn_to_frame(out_frame, &output, ctx);
|
||||
}
|
||||
} else {
|
||||
out_frame->width = output.width;
|
||||
out_frame->height = output.height;
|
||||
}
|
||||
ie_blob_free(&output_blob);
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
|
||||
const char **output_names, uint32_t nb_output, AVFrame *out_frame)
|
||||
{
|
||||
OVModel *ov_model = (OVModel *)model->model;
|
||||
OVContext *ctx = &ov_model->ctx;
|
||||
TaskItem task;
|
||||
RequestItem request;
|
||||
|
||||
if (!in_frame) {
|
||||
av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n");
|
||||
@ -379,7 +420,24 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_n
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
return execute_model_ov(model, input_name, in_frame, output_names, nb_output, out_frame, 1);
|
||||
if (nb_output != 1) {
|
||||
// currently, the filter does not need multiple outputs,
|
||||
// so we just pending the support until we really need it.
|
||||
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
task.done = 0;
|
||||
task.do_ioproc = 1;
|
||||
task.input_name = input_name;
|
||||
task.in_frame = in_frame;
|
||||
task.output_name = output_names[0];
|
||||
task.out_frame = out_frame;
|
||||
task.ov_model = ov_model;
|
||||
|
||||
request.infer_request = ov_model->infer_request;
|
||||
|
||||
return execute_model_ov(&task, &request);
|
||||
}
|
||||
|
||||
void ff_dnn_free_model_ov(DNNModel **model)
|
||||
|
Loading…
Reference in New Issue
Block a user