1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00

dnn_backend_openvino.c: separate function execute_model_ov

function fill_model_input_ov and infer_completion_callback are
extracted, it will help the async execution for reuse.

Signed-off-by: Xie, Lin <lin.xie@intel.com>
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
Guo, Yejun 2020-11-17 20:55:13 +08:00
parent 6506ab8b03
commit 2b177033bb

View File

@ -50,6 +50,21 @@ typedef struct OVModel{
ie_infer_request_t *infer_request;
} OVModel;
typedef struct TaskItem {
OVModel *ov_model;
const char *input_name;
AVFrame *in_frame;
const char *output_name;
AVFrame *out_frame;
int do_ioproc;
int done;
} TaskItem;
typedef struct RequestItem {
ie_infer_request_t *infer_request;
TaskItem *task;
} RequestItem;
#define APPEND_STRING(generated_string, iterate_string) \
generated_string = generated_string ? av_asprintf("%s %s", generated_string, iterate_string) : \
av_asprintf("%s", iterate_string);
@ -63,10 +78,6 @@ static const AVOption dnn_openvino_options[] = {
AVFILTER_DEFINE_CLASS(dnn_openvino);
static DNNReturnType execute_model_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc);
static DNNDataType precision_to_datatype(precision_e precision)
{
switch (precision)
@ -79,6 +90,136 @@ static DNNDataType precision_to_datatype(precision_e precision)
}
}
static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, RequestItem *request)
{
dimensions_t dims;
precision_e precision;
ie_blob_buffer_t blob_buffer;
OVContext *ctx = &ov_model->ctx;
IEStatusCode status;
DNNData input;
ie_blob_t *input_blob = NULL;
status = ie_infer_request_get_blob(request->infer_request, task->input_name, &input_blob);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob with name %s\n", task->input_name);
return DNN_ERROR;
}
status |= ie_blob_get_dims(input_blob, &dims);
status |= ie_blob_get_precision(input_blob, &precision);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob dims/precision\n");
return DNN_ERROR;
}
status = ie_blob_get_buffer(input_blob, &blob_buffer);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob buffer\n");
return DNN_ERROR;
}
input.height = dims.dims[2];
input.width = dims.dims[3];
input.channels = dims.dims[1];
input.data = blob_buffer.buffer;
input.dt = precision_to_datatype(precision);
if (task->do_ioproc) {
if (ov_model->model->pre_proc != NULL) {
ov_model->model->pre_proc(task->in_frame, &input, ov_model->model->userdata);
} else {
proc_from_frame_to_dnn(task->in_frame, &input, ctx);
}
}
ie_blob_free(&input_blob);
return DNN_SUCCESS;
}
static void infer_completion_callback(void *args)
{
dimensions_t dims;
precision_e precision;
IEStatusCode status;
RequestItem *request = args;
TaskItem *task = request->task;
ie_blob_t *output_blob = NULL;
ie_blob_buffer_t blob_buffer;
DNNData output;
OVContext *ctx = &task->ov_model->ctx;
status = ie_infer_request_get_blob(request->infer_request, task->output_name, &output_blob);
if (status != OK) {
//incorrect output name
char *model_output_name = NULL;
char *all_output_names = NULL;
size_t model_output_count = 0;
av_log(ctx, AV_LOG_ERROR, "Failed to get model output data\n");
status = ie_network_get_outputs_number(task->ov_model->network, &model_output_count);
for (size_t i = 0; i < model_output_count; i++) {
status = ie_network_get_output_name(task->ov_model->network, i, &model_output_name);
APPEND_STRING(all_output_names, model_output_name)
}
av_log(ctx, AV_LOG_ERROR,
"output \"%s\" may not correct, all output(s) are: \"%s\"\n",
task->output_name, all_output_names);
return;
}
status = ie_blob_get_buffer(output_blob, &blob_buffer);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to access output memory\n");
return;
}
status |= ie_blob_get_dims(output_blob, &dims);
status |= ie_blob_get_precision(output_blob, &precision);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get dims or precision of output\n");
return;
}
output.channels = dims.dims[1];
output.height = dims.dims[2];
output.width = dims.dims[3];
output.dt = precision_to_datatype(precision);
output.data = blob_buffer.buffer;
if (task->do_ioproc) {
if (task->ov_model->model->post_proc != NULL) {
task->ov_model->model->post_proc(task->out_frame, &output, task->ov_model->model->userdata);
} else {
proc_from_dnn_to_frame(task->out_frame, &output, ctx);
}
} else {
task->out_frame->width = output.width;
task->out_frame->height = output.height;
}
ie_blob_free(&output_blob);
task->done = 1;
}
static DNNReturnType execute_model_ov(TaskItem *task, RequestItem *request)
{
IEStatusCode status;
OVContext *ctx = &task->ov_model->ctx;
DNNReturnType ret = fill_model_input_ov(task->ov_model, task, request);
if (ret != DNN_SUCCESS) {
return ret;
}
status = ie_infer_request_infer(request->infer_request);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
return DNN_ERROR;
}
request->task = task;
infer_completion_callback(request);
return task->done ? DNN_SUCCESS : DNN_ERROR;
}
static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input_name)
{
OVModel *ov_model = (OVModel *)model;
@ -142,6 +283,8 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu
DNNReturnType ret;
OVModel *ov_model = (OVModel *)model;
OVContext *ctx = &ov_model->ctx;
TaskItem task;
RequestItem request;
AVFrame *in_frame = av_frame_alloc();
AVFrame *out_frame = NULL;
@ -158,7 +301,17 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu
in_frame->width = input_width;
in_frame->height = input_height;
ret = execute_model_ov(ov_model->model, input_name, in_frame, &output_name, 1, out_frame, 0);
task.done = 0;
task.do_ioproc = 0;
task.input_name = input_name;
task.in_frame = in_frame;
task.output_name = output_name;
task.out_frame = out_frame;
task.ov_model = ov_model;
request.infer_request = ov_model->infer_request;
ret = execute_model_ov(&task, &request);
*output_width = out_frame->width;
*output_height = out_frame->height;
@ -249,125 +402,13 @@ err:
return NULL;
}
static DNNReturnType execute_model_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc)
{
char *model_output_name = NULL;
char *all_output_names = NULL;
dimensions_t dims;
precision_e precision;
ie_blob_buffer_t blob_buffer;
OVModel *ov_model = (OVModel *)model->model;
OVContext *ctx = &ov_model->ctx;
IEStatusCode status;
size_t model_output_count = 0;
DNNData input, output;
ie_blob_t *input_blob = NULL;
status = ie_infer_request_get_blob(ov_model->infer_request, input_name, &input_blob);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob\n");
return DNN_ERROR;
}
status |= ie_blob_get_dims(input_blob, &dims);
status |= ie_blob_get_precision(input_blob, &precision);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob dims/precision\n");
return DNN_ERROR;
}
status = ie_blob_get_buffer(input_blob, &blob_buffer);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get input blob buffer\n");
return DNN_ERROR;
}
input.height = dims.dims[2];
input.width = dims.dims[3];
input.channels = dims.dims[1];
input.data = blob_buffer.buffer;
input.dt = precision_to_datatype(precision);
if (do_ioproc) {
if (ov_model->model->pre_proc != NULL) {
ov_model->model->pre_proc(in_frame, &input, ov_model->model->userdata);
} else {
proc_from_frame_to_dnn(in_frame, &input, ctx);
}
}
ie_blob_free(&input_blob);
if (nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
return DNN_ERROR;
}
status = ie_infer_request_infer(ov_model->infer_request);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
return DNN_ERROR;
}
for (uint32_t i = 0; i < nb_output; ++i) {
const char *output_name = output_names[i];
ie_blob_t *output_blob = NULL;
status = ie_infer_request_get_blob(ov_model->infer_request, output_name, &output_blob);
if (status != OK) {
//incorrect output name
av_log(ctx, AV_LOG_ERROR, "Failed to get model output data\n");
status = ie_network_get_outputs_number(ov_model->network, &model_output_count);
for (size_t i = 0; i < model_output_count; i++) {
status = ie_network_get_output_name(ov_model->network, i, &model_output_name);
APPEND_STRING(all_output_names, model_output_name)
}
av_log(ctx, AV_LOG_ERROR,
"output \"%s\" may not correct, all output(s) are: \"%s\"\n",
output_name, all_output_names);
return DNN_ERROR;
}
status = ie_blob_get_buffer(output_blob, &blob_buffer);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to access output memory\n");
return DNN_ERROR;
}
status |= ie_blob_get_dims(output_blob, &dims);
status |= ie_blob_get_precision(output_blob, &precision);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to get dims or precision of output\n");
return DNN_ERROR;
}
output.channels = dims.dims[1];
output.height = dims.dims[2];
output.width = dims.dims[3];
output.dt = precision_to_datatype(precision);
output.data = blob_buffer.buffer;
if (do_ioproc) {
if (ov_model->model->post_proc != NULL) {
ov_model->model->post_proc(out_frame, &output, ov_model->model->userdata);
} else {
proc_from_dnn_to_frame(out_frame, &output, ctx);
}
} else {
out_frame->width = output.width;
out_frame->height = output.height;
}
ie_blob_free(&output_blob);
}
return DNN_SUCCESS;
}
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame)
{
OVModel *ov_model = (OVModel *)model->model;
OVContext *ctx = &ov_model->ctx;
TaskItem task;
RequestItem request;
if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n");
@ -379,7 +420,24 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_n
return DNN_ERROR;
}
return execute_model_ov(model, input_name, in_frame, output_names, nb_output, out_frame, 1);
if (nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
return DNN_ERROR;
}
task.done = 0;
task.do_ioproc = 1;
task.input_name = input_name;
task.in_frame = in_frame;
task.output_name = output_names[0];
task.out_frame = out_frame;
task.ov_model = ov_model;
request.infer_request = ov_model->infer_request;
return execute_model_ov(&task, &request);
}
void ff_dnn_free_model_ov(DNNModel **model)