1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

VC-1 Advanced Profile support (progressive only, tested on WVC1 samples)

Originally committed as revision 6162 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Kostya Shishkov 2006-09-04 04:24:49 +00:00
parent 3c8f30a745
commit 3c275f6def

View File

@ -209,6 +209,16 @@ enum CodingSet {
CS_HIGH_RATE_INTER
};
/** @name Overlap conditions for Advanced Profile */
//@{
enum COTypes {
CONDOVER_NONE = 0,
CONDOVER_ALL,
CONDOVER_SELECT
};
//@}
/** The VC1 Context
* @fixme Change size wherever another size is more efficient
* Many members are only used for Advanced Profile
@ -246,6 +256,7 @@ typedef struct VC1Context{
int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
int hrd_param_flag; ///< Presence of Hypothetical Reference
///< Decoder parameters
int psf; ///< Progressive Segmented Frame
//@}
/** Sequence header data for all Profiles
@ -344,8 +355,10 @@ typedef struct VC1Context{
int hrd_num_leaky_buckets;
uint8_t bit_rate_exponent;
uint8_t buffer_size_exponent;
// BitPlane ac_pred_plane; ///< AC prediction flags bitplane
// BitPlane over_flags_plane; ///< Overflags bitplane
uint8_t* acpred_plane; ///< AC prediction flags bitplane
int acpred_is_raw;
uint8_t* over_flags_plane; ///< Overflags bitplane
int overflg_is_raw;
uint8_t condover;
uint16_t *hrd_rate, *hrd_buffer;
uint8_t *hrd_fullness;
@ -354,6 +367,8 @@ typedef struct VC1Context{
uint8_t range_mapy;
uint8_t range_mapuv;
//@}
int p_frame_skipped;
} VC1Context;
/**
@ -1095,6 +1110,8 @@ static void vc1_mc_4mv_chroma(VC1Context *v)
}
}
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
/**
* Decode Simple/Main Profiles sequence header
* @see Figure 7-8, p16-17
@ -1116,18 +1133,7 @@ static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
if (v->profile == PROFILE_ADVANCED)
{
v->level = get_bits(gb, 3);
if(v->level >= 5)
{
av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
}
v->chromaformat = get_bits(gb, 2);
if (v->chromaformat != 1)
{
av_log(avctx, AV_LOG_ERROR,
"Only 4:2:0 chroma format supported\n");
return -1;
}
return decode_sequence_header_adv(v, gb);
}
else
{
@ -1241,6 +1247,125 @@ static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
return -1;
}
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
{
v->res_rtm_flag = 1;
v->level = get_bits(gb, 3);
if(v->level >= 5)
{
av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
}
v->chromaformat = get_bits(gb, 2);
if (v->chromaformat != 1)
{
av_log(v->s.avctx, AV_LOG_ERROR,
"Only 4:2:0 chroma format supported\n");
return -1;
}
// (fps-2)/4 (->30)
v->frmrtq_postproc = get_bits(gb, 3); //common
// (bitrate-32kbps)/64kbps
v->bitrtq_postproc = get_bits(gb, 5); //common
v->postprocflag = get_bits(gb, 1); //common
v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
v->broadcast = get_bits1(gb);
v->interlace = get_bits1(gb);
v->tfcntrflag = get_bits1(gb);
v->finterpflag = get_bits1(gb);
get_bits1(gb); // reserved
v->psf = get_bits1(gb);
if(v->psf) { //PsF, 6.1.13
av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
return -1;
}
if(get_bits1(gb)) { //Display Info - decoding is not affected by it
int w, h, ar = 0;
av_log(v->s.avctx, AV_LOG_INFO, "Display extended info:\n");
w = get_bits(gb, 14);
h = get_bits(gb, 14);
av_log(v->s.avctx, AV_LOG_INFO, "Display dimensions: %ix%i\n", w, h);
//TODO: store aspect ratio in AVCodecContext
if(get_bits1(gb))
ar = get_bits(gb, 4);
if(ar == 15) {
w = get_bits(gb, 8);
h = get_bits(gb, 8);
}
if(get_bits1(gb)){ //framerate stuff
if(get_bits1(gb)) {
get_bits(gb, 16);
} else {
get_bits(gb, 8);
get_bits(gb, 4);
}
}
if(get_bits1(gb)){
v->color_prim = get_bits(gb, 8);
v->transfer_char = get_bits(gb, 8);
v->matrix_coef = get_bits(gb, 8);
}
}
v->hrd_param_flag = get_bits1(gb);
if(v->hrd_param_flag) {
int i;
v->hrd_num_leaky_buckets = get_bits(gb, 5);
get_bits(gb, 4); //bitrate exponent
get_bits(gb, 4); //buffer size exponent
for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
get_bits(gb, 16); //hrd_rate[n]
get_bits(gb, 16); //hrd_buffer[n]
}
}
return 0;
}
static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
{
VC1Context *v = avctx->priv_data;
int i;
av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
get_bits1(gb); // broken link
get_bits1(gb); // closed entry
v->panscanflag = get_bits1(gb);
get_bits1(gb); // refdist flag
v->s.loop_filter = get_bits1(gb);
v->fastuvmc = get_bits1(gb);
v->extended_mv = get_bits1(gb);
v->dquant = get_bits(gb, 2);
v->vstransform = get_bits1(gb);
v->overlap = get_bits1(gb);
v->quantizer_mode = get_bits(gb, 2);
if(v->hrd_param_flag){
for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
get_bits(gb, 8); //hrd_full[n]
}
}
if(get_bits1(gb)){
avctx->coded_width = (get_bits(gb, 12)+1)<<1;
avctx->coded_height = (get_bits(gb, 12)+1)<<1;
}
if(v->extended_mv)
v->extended_dmv = get_bits1(gb);
if(get_bits1(gb)) {
av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
skip_bits(gb, 3); // Y range, ignored for now
}
if(get_bits1(gb)) {
av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
skip_bits(gb, 3); // UV range, ignored for now
}
return 0;
}
static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
{
@ -1446,6 +1571,196 @@ static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
return 0;
}
static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
{
int fcm;
int pqindex, lowquant;
int status;
v->p_frame_skipped = 0;
if(v->interlace)
fcm = decode012(gb);
switch(get_prefix(gb, 0, 4)) {
case 0:
v->s.pict_type = P_TYPE;
break;
case 1:
v->s.pict_type = B_TYPE;
return -1;
// break;
case 2:
v->s.pict_type = I_TYPE;
break;
case 3:
v->s.pict_type = BI_TYPE;
return -1;
// break;
case 4:
v->s.pict_type = P_TYPE; // skipped pic
v->p_frame_skipped = 1;
return 0;
}
if(v->tfcntrflag)
get_bits(gb, 8);
if(v->broadcast) {
if(!v->interlace || v->panscanflag) {
get_bits(gb, 2);
} else {
get_bits1(gb);
get_bits1(gb);
}
}
if(v->panscanflag) {
//...
}
v->rnd = get_bits1(gb);
if(v->interlace)
v->uvsamp = get_bits1(gb);
if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
pqindex = get_bits(gb, 5);
v->pqindex = pqindex;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = pquant_table[0][pqindex];
else
v->pq = pquant_table[1][pqindex];
v->pquantizer = 1;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pquantizer = pqindex < 9;
if (v->quantizer_mode == QUANT_NON_UNIFORM)
v->pquantizer = 0;
v->pqindex = pqindex;
if (pqindex < 9) v->halfpq = get_bits(gb, 1);
else v->halfpq = 0;
if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
v->pquantizer = get_bits(gb, 1);
switch(v->s.pict_type) {
case I_TYPE:
status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->condover = CONDOVER_NONE;
if(v->overlap && v->pq <= 8) {
v->condover = decode012(gb);
if(v->condover == CONDOVER_SELECT) {
status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
}
}
break;
case P_TYPE:
if(v->postprocflag)
v->postproc = get_bits1(gb);
if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
else v->mvrange = 0;
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
if (v->pq < 5) v->tt_index = 0;
else if(v->pq < 13) v->tt_index = 1;
else v->tt_index = 2;
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
{
int scale, shift, i;
v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
/* fill lookup tables for intensity compensation */
if(!v->lumscale) {
scale = -64;
shift = (255 - v->lumshift * 2) << 6;
if(v->lumshift > 31)
shift += 128 << 6;
} else {
scale = v->lumscale + 32;
if(v->lumshift > 31)
shift = (v->lumshift - 64) << 6;
else
shift = v->lumshift << 6;
}
for(i = 0; i < 256; i++) {
v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
}
}
if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else
v->s.quarter_sample = 1;
} else
v->s.quarter_sample = 1;
v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV)
|| v->mv_mode == MV_PMODE_MIXED_MV)
{
status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
} else {
v->mv_type_is_raw = 0;
memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
}
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
/* Hopefully this is correct for P frames */
v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0; //FIXME Is that so ?
if (v->vstransform)
{
v->ttmbf = get_bits(gb, 1);
if (v->ttmbf)
{
v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
}
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
}
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
{
v->y_ac_table_index = decode012(gb);
}
/* DC Syntax */
v->s.dc_table_index = get_bits(gb, 1);
if (v->s.pict_type == I_TYPE && v->dquant) {
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
return 0;
}
/***********************************************************************/
/**
* @defgroup block VC-1 Block-level functions
@ -2229,6 +2544,202 @@ not_coded:
return 0;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
*/
static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int run_diff, i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (mquant == 1) dcdiff = get_bits(gb, 10);
else if (mquant == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (mquant == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (mquant == 2)
dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
}
if (get_bits(gb, 1))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
/* Skip ? */
run_diff = 0;
i = 0;
//AC Decoding
i = 1;
/* check if AC is needed at all and adjust direction if needed */
if(!a_avail) dc_pred_dir = 1;
if(!c_avail) dc_pred_dir = 0;
if(!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = mquant * 2 + v->halfpq;
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.qscale_table[mb_pos];
if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if(n && n<4) q2 = q1;
if(coded) {
int last = 0, skip, value;
const int8_t *zz_table;
int k;
if(v->s.ac_pred) {
if(!dc_pred_dir)
zz_table = vc1_horizontal_zz;
else
zz_table = vc1_vertical_zz;
} else
zz_table = vc1_normal_zz;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(use_pred) {
/* scale predictors if needed*/
if(q2 && q1!=q2) {
q1 = q1 * 2 - 1;
q2 = q2 * 2 - 1;
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for(k = 1; k < 8; k++)
block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k] = block[k << 3];
ac_val2[k + 8] = block[k];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
if(use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
if(use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 - 1;
q2 = q2 * 2 - 1;
for(k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else {//top
if(use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 - 1;
q2 = q2 * 2 - 1;
for(k = 1; k < 8; k++)
ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if(use_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << 3] = ac_val2[k] * scale;
if(!v->pquantizer && block[k << 3])
block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k] = ac_val2[k + 8] * scale;
if(!v->pquantizer && block[k])
block[k] += (block[k] < 0) ? -mquant : mquant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
* @param v VC1Context
* @param block block to decode
@ -2507,7 +3018,10 @@ static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquan
i += skip;
if(i > 31)
break;
if(v->profile < PROFILE_ADVANCED)
idx = vc1_simple_progressive_8x4_zz[i++];
else
idx = vc1_adv_progressive_8x4_zz[i++];
block[idx + off] = value * scale;
if(!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
@ -2526,7 +3040,10 @@ static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquan
i += skip;
if(i > 31)
break;
if(v->profile < PROFILE_ADVANCED)
idx = vc1_simple_progressive_4x8_zz[i++];
else
idx = vc1_adv_progressive_4x8_zz[i++];
block[idx + off] = value * scale;
if(!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
@ -3025,6 +3542,134 @@ static void vc1_decode_i_blocks(VC1Context *v)
}
}
/** Decode blocks of I-frame for advanced profile
*/
static void vc1_decode_i_blocks_adv(VC1Context *v)
{
int k, j;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
int mquant = v->pq;
int mqdiff;
int overlap;
GetBitContext *gb = &s->gb;
/* select codingmode used for VLC tables selection */
switch(v->y_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[v->pq];
s->c_dc_scale = s->c_dc_scale_table[v->pq];
//do frame decode
s->mb_x = s->mb_y = 0;
s->mb_intra = 1;
s->first_slice_line = 1;
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
mb_pos = s->mb_x + s->mb_y * s->mb_stride;
s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
// do actual MB decoding and displaying
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
if(v->acpred_is_raw)
v->s.ac_pred = get_bits(&v->s.gb, 1);
else
v->s.ac_pred = v->acpred_plane[mb_pos];
if(v->condover == CONDOVER_SELECT) {
if(v->overflg_is_raw)
overlap = get_bits(&v->s.gb, 1);
else
overlap = v->over_flags_plane[mb_pos];
} else
overlap = (v->condover == CONDOVER_ALL);
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
for(k = 0; k < 6; k++) {
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
v->a_avail = !s->first_slice_line || (k==2 || k==3);
v->c_avail = !!s->mb_x || (k==1 || k==3);
vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
s->dsp.vc1_inv_trans_8x8(s->block[k]);
for(j = 0; j < 64; j++) s->block[k][j] += 128;
}
vc1_put_block(v, s->block);
if(overlap) {
if(!s->first_slice_line) {
s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
}
}
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
if(s->mb_x) {
s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
}
}
s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
}
if(get_bits_count(&s->gb) > v->bits) {
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
}
static void vc1_decode_p_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
@ -3121,6 +3766,25 @@ static void vc1_decode_b_blocks(VC1Context *v)
}
}
static void vc1_decode_skip_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
s->mb_x = 0;
ff_init_block_index(s);
ff_update_block_index(s);
memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
s->pict_type = P_TYPE;
}
static void vc1_decode_blocks(VC1Context *v)
{
@ -3128,9 +3792,15 @@ static void vc1_decode_blocks(VC1Context *v)
switch(v->s.pict_type) {
case I_TYPE:
if(v->profile == PROFILE_ADVANCED)
vc1_decode_i_blocks_adv(v);
else
vc1_decode_i_blocks(v);
break;
case P_TYPE:
if(v->p_frame_skipped)
vc1_decode_skip_blocks(v);
else
vc1_decode_p_blocks(v);
break;
case B_TYPE:
@ -3189,6 +3859,45 @@ static int vc1_decode_init(AVCodecContext *avctx)
{
av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
}
} else { // VC1/WVC1
int edata_size = avctx->extradata_size;
uint8_t *edata = avctx->extradata;
if(avctx->extradata_size < 16) {
av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", edata_size);
return -1;
}
while(edata_size > 8) {
// test if we've found header
if(BE_32(edata) == 0x0000010F) {
edata += 4;
edata_size -= 4;
break;
}
edata_size--;
edata++;
}
init_get_bits(&gb, edata, edata_size*8);
if (decode_sequence_header(avctx, &gb) < 0)
return -1;
while(edata_size > 8) {
// test if we've found entry point
if(BE_32(edata) == 0x0000010E) {
edata += 4;
edata_size -= 4;
break;
}
edata_size--;
edata++;
}
init_get_bits(&gb, edata, edata_size*8);
if (decode_entry_point(avctx, &gb) < 0)
return -1;
}
avctx->has_b_frames= !!(avctx->max_b_frames);
@ -3198,6 +3907,8 @@ static int vc1_decode_init(AVCodecContext *avctx)
/* Allocate mb bitplanes */
v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
/* allocate block type info in that way so it could be used with s->block_index[] */
v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
@ -3229,6 +3940,7 @@ static int vc1_decode_frame(AVCodecContext *avctx,
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
AVFrame *pict = data;
uint8_t *buf2 = NULL;
/* no supplementary picture */
if (buf_size == 0) {
@ -3251,28 +3963,61 @@ static int vc1_decode_frame(AVCodecContext *avctx,
avctx->has_b_frames= !s->low_delay;
//for advanced profile we need to unescape buffer
if (avctx->codec_id == CODEC_ID_VC1) {
int i, buf_size2;
buf2 = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
buf_size2 = 0;
for(i = 0; i < buf_size; i++) {
if(buf[i] == 3 && i >= 2 && !buf[i-1] && !buf[i-2] && i < buf_size-1 && buf[i+1] < 4) {
buf2[buf_size2++] = buf[i+1];
i++;
} else
buf2[buf_size2++] = buf[i];
}
init_get_bits(&s->gb, buf2, buf_size2*8);
} else
init_get_bits(&s->gb, buf, buf_size*8);
// do parse frame header
if(vc1_parse_frame_header(v, &s->gb) == -1)
if(v->profile < PROFILE_ADVANCED) {
if(vc1_parse_frame_header(v, &s->gb) == -1) {
if(buf2)av_free(buf2);
return -1;
}
} else {
if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
if(buf2)av_free(buf2);
return -1;
}
}
if(s->pict_type != I_TYPE && !v->res_rtm_flag)return -1;
if(s->pict_type == B_TYPE)return -1;
if(s->pict_type != I_TYPE && !v->res_rtm_flag){
if(buf2)av_free(buf2);
return -1;
}
// for hurry_up==5
s->current_picture.pict_type= s->pict_type;
s->current_picture.key_frame= s->pict_type == I_TYPE;
/* skip B-frames if we don't have reference frames */
if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
if(buf2)av_free(buf2);
return -1;//buf_size;
}
/* skip b frames if we are in a hurry */
if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
|| (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
|| avctx->skip_frame >= AVDISCARD_ALL)
|| avctx->skip_frame >= AVDISCARD_ALL) {
if(buf2)av_free(buf2);
return buf_size;
}
/* skip everything if we are in a hurry>=5 */
if(avctx->hurry_up>=5) return -1;//buf_size;
if(avctx->hurry_up>=5) {
if(buf2)av_free(buf2);
return -1;//buf_size;
}
if(s->next_p_frame_damaged){
if(s->pict_type==B_TYPE)
@ -3281,8 +4026,10 @@ static int vc1_decode_frame(AVCodecContext *avctx,
s->next_p_frame_damaged=0;
}
if(MPV_frame_start(s, avctx) < 0)
if(MPV_frame_start(s, avctx) < 0) {
if(buf2)av_free(buf2);
return -1;
}
ff_er_frame_start(s);
@ -3312,6 +4059,7 @@ assert(s->current_picture.pict_type == s->pict_type);
/* we substract 1 because it is added on utils.c */
avctx->frame_number = s->picture_number - 1;
if(buf2)av_free(buf2);
return buf_size;
}
@ -3328,6 +4076,8 @@ static int vc1_decode_end(AVCodecContext *avctx)
MPV_common_end(&v->s);
av_freep(&v->mv_type_mb_plane);
av_freep(&v->direct_mb_plane);
av_freep(&v->acpred_plane);
av_freep(&v->over_flags_plane);
av_freep(&v->mb_type_base);
return 0;
}