1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

added the official VP3 IDCT (C implementation) as well as a grayscale

decoding mode

Originally committed as revision 2027 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Mike Melanson 2003-07-10 05:16:25 +00:00
parent 44a2950f72
commit 3d32b429d3

View File

@ -17,6 +17,8 @@
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* VP3 Video Decoder by Mike Melanson (melanson@pcisys.net)
* For more information about the VP3 coding process, visit:
* http://www.pcisys.net/~melanson/codecs/
*
*/
@ -287,6 +289,307 @@ typedef struct Vp3DecodeContext {
} Vp3DecodeContext;
/************************************************************************
* VP3 I/DCT
************************************************************************/
#define IdctAdjustBeforeShift 8
#define xC1S7 64277
#define xC2S6 60547
#define xC3S5 54491
#define xC4S4 46341
#define xC5S3 36410
#define xC6S2 25080
#define xC7S1 12785
void vp3_idct_c(int16_t *input_data, int16_t *dequant_matrix,
int16_t *output_data)
{
int32_t intermediate_data[64];
int32_t *ip = intermediate_data;
int16_t *op = output_data;
int32_t _A, _B, _C, _D, _Ad, _Bd, _Cd, _Dd, _E, _F, _G, _H;
int32_t _Ed, _Gd, _Add, _Bdd, _Fd, _Hd;
int32_t t1, t2;
int i, j;
debug_idct("raw coefficient block:\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
debug_idct(" %5d", input_data[i * 8 + j]);
}
debug_idct("\n");
}
debug_idct("\n");
for (i = 0; i < 64; i++) {
j = dezigzag_index[i];
intermediate_data[j] = dequant_matrix[i] * input_data[i];
}
debug_idct("dequantized block:\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
debug_idct(" %5d", intermediate_data[i * 8 + j]);
}
debug_idct("\n");
}
debug_idct("\n");
/* Inverse DCT on the rows now */
for (i = 0; i < 8; i++) {
/* Check for non-zero values */
if ( ip[0] | ip[1] | ip[2] | ip[3] | ip[4] | ip[5] | ip[6] | ip[7] ) {
t1 = (int32_t)(xC1S7 * ip[1]);
t2 = (int32_t)(xC7S1 * ip[7]);
t1 >>= 16;
t2 >>= 16;
_A = t1 + t2;
t1 = (int32_t)(xC7S1 * ip[1]);
t2 = (int32_t)(xC1S7 * ip[7]);
t1 >>= 16;
t2 >>= 16;
_B = t1 - t2;
t1 = (int32_t)(xC3S5 * ip[3]);
t2 = (int32_t)(xC5S3 * ip[5]);
t1 >>= 16;
t2 >>= 16;
_C = t1 + t2;
t1 = (int32_t)(xC3S5 * ip[5]);
t2 = (int32_t)(xC5S3 * ip[3]);
t1 >>= 16;
t2 >>= 16;
_D = t1 - t2;
t1 = (int32_t)(xC4S4 * (_A - _C));
t1 >>= 16;
_Ad = t1;
t1 = (int32_t)(xC4S4 * (_B - _D));
t1 >>= 16;
_Bd = t1;
_Cd = _A + _C;
_Dd = _B + _D;
t1 = (int32_t)(xC4S4 * (ip[0] + ip[4]));
t1 >>= 16;
_E = t1;
t1 = (int32_t)(xC4S4 * (ip[0] - ip[4]));
t1 >>= 16;
_F = t1;
t1 = (int32_t)(xC2S6 * ip[2]);
t2 = (int32_t)(xC6S2 * ip[6]);
t1 >>= 16;
t2 >>= 16;
_G = t1 + t2;
t1 = (int32_t)(xC6S2 * ip[2]);
t2 = (int32_t)(xC2S6 * ip[6]);
t1 >>= 16;
t2 >>= 16;
_H = t1 - t2;
_Ed = _E - _G;
_Gd = _E + _G;
_Add = _F + _Ad;
_Bdd = _Bd - _H;
_Fd = _F - _Ad;
_Hd = _Bd + _H;
/* Final sequence of operations over-write original inputs. */
ip[0] = (int16_t)((_Gd + _Cd ) >> 0);
ip[7] = (int16_t)((_Gd - _Cd ) >> 0);
ip[1] = (int16_t)((_Add + _Hd ) >> 0);
ip[2] = (int16_t)((_Add - _Hd ) >> 0);
ip[3] = (int16_t)((_Ed + _Dd ) >> 0);
ip[4] = (int16_t)((_Ed - _Dd ) >> 0);
ip[5] = (int16_t)((_Fd + _Bdd ) >> 0);
ip[6] = (int16_t)((_Fd - _Bdd ) >> 0);
}
ip += 8; /* next row */
}
ip = intermediate_data;
for ( i = 0; i < 8; i++) {
/* Check for non-zero values (bitwise or faster than ||) */
if ( ip[0 * 8] | ip[1 * 8] | ip[2 * 8] | ip[3 * 8] |
ip[4 * 8] | ip[5 * 8] | ip[6 * 8] | ip[7 * 8] ) {
t1 = (int32_t)(xC1S7 * ip[1*8]);
t2 = (int32_t)(xC7S1 * ip[7*8]);
t1 >>= 16;
t2 >>= 16;
_A = t1 + t2;
t1 = (int32_t)(xC7S1 * ip[1*8]);
t2 = (int32_t)(xC1S7 * ip[7*8]);
t1 >>= 16;
t2 >>= 16;
_B = t1 - t2;
t1 = (int32_t)(xC3S5 * ip[3*8]);
t2 = (int32_t)(xC5S3 * ip[5*8]);
t1 >>= 16;
t2 >>= 16;
_C = t1 + t2;
t1 = (int32_t)(xC3S5 * ip[5*8]);
t2 = (int32_t)(xC5S3 * ip[3*8]);
t1 >>= 16;
t2 >>= 16;
_D = t1 - t2;
t1 = (int32_t)(xC4S4 * (_A - _C));
t1 >>= 16;
_Ad = t1;
t1 = (int32_t)(xC4S4 * (_B - _D));
t1 >>= 16;
_Bd = t1;
_Cd = _A + _C;
_Dd = _B + _D;
t1 = (int32_t)(xC4S4 * (ip[0*8] + ip[4*8]));
t1 >>= 16;
_E = t1;
t1 = (int32_t)(xC4S4 * (ip[0*8] - ip[4*8]));
t1 >>= 16;
_F = t1;
t1 = (int32_t)(xC2S6 * ip[2*8]);
t2 = (int32_t)(xC6S2 * ip[6*8]);
t1 >>= 16;
t2 >>= 16;
_G = t1 + t2;
t1 = (int32_t)(xC6S2 * ip[2*8]);
t2 = (int32_t)(xC2S6 * ip[6*8]);
t1 >>= 16;
t2 >>= 16;
_H = t1 - t2;
_Ed = _E - _G;
_Gd = _E + _G;
_Add = _F + _Ad;
_Bdd = _Bd - _H;
_Fd = _F - _Ad;
_Hd = _Bd + _H;
_Gd += IdctAdjustBeforeShift;
_Add += IdctAdjustBeforeShift;
_Ed += IdctAdjustBeforeShift;
_Fd += IdctAdjustBeforeShift;
/* Final sequence of operations over-write original inputs. */
op[0*8] = (int16_t)((_Gd + _Cd ) >> 4);
op[7*8] = (int16_t)((_Gd - _Cd ) >> 4);
op[1*8] = (int16_t)((_Add + _Hd ) >> 4);
op[2*8] = (int16_t)((_Add - _Hd ) >> 4);
op[3*8] = (int16_t)((_Ed + _Dd ) >> 4);
op[4*8] = (int16_t)((_Ed - _Dd ) >> 4);
op[5*8] = (int16_t)((_Fd + _Bdd ) >> 4);
op[6*8] = (int16_t)((_Fd - _Bdd ) >> 4);
} else {
op[0*8] = 0;
op[7*8] = 0;
op[1*8] = 0;
op[2*8] = 0;
op[3*8] = 0;
op[4*8] = 0;
op[5*8] = 0;
op[6*8] = 0;
}
ip++; /* next column */
op++;
}
}
void vp3_idct_put(int16_t *input_data, int16_t *dequant_matrix,
uint8_t *dest, int stride)
{
int16_t transformed_data[64];
int16_t *op;
int i, j;
vp3_idct_c(input_data, dequant_matrix, transformed_data);
/* place in final output */
op = transformed_data;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
if (*op < -128)
*dest = 0;
else if (*op > 127)
*dest = 255;
else
*dest = (uint8_t)(*op + 128);
op++;
dest++;
}
dest += (stride - 8);
}
}
void vp3_idct_add(int16_t *input_data, int16_t *dequant_matrix,
uint8_t *dest, int stride)
{
int16_t transformed_data[64];
int16_t *op;
int i, j;
int16_t sample;
vp3_idct_c(input_data, dequant_matrix, transformed_data);
/* place in final output */
op = transformed_data;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
sample = *dest + *op;
if (sample < 0)
*dest = 0;
else if (sample > 255)
*dest = 255;
else
*dest = (uint8_t)(sample & 0xFF);
op++;
dest++;
}
dest += (stride - 8);
}
}
/************************************************************************
* VP3 specific functions
************************************************************************/
@ -843,7 +1146,7 @@ static void init_dequantizer(Vp3DecodeContext *s)
*
* Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
*/
#define SCALER 1
#define SCALER 4
/* scale DC quantizers */
s->intra_y_dequant[0] = vp31_intra_y_dequant[0] * dc_scale_factor / 100;
@ -1423,7 +1726,6 @@ static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
int current_fragment;
debug_vp3(" vp3: unpacking motion vectors\n");
if (s->keyframe) {
debug_vp3(" keyframe-- there are no motion vectors\n");
@ -2030,10 +2332,7 @@ static void render_fragments(Vp3DecodeContext *s,
int x, y;
int m, n;
int i = first_fragment;
int j;
int16_t *dequantizer;
DCTELEM dequant_block[64];
DCTELEM dequant_block_permuted[64];
unsigned char *output_plane;
unsigned char *last_plane;
unsigned char *golden_plane;
@ -2122,8 +2421,8 @@ printf (" help! got beefy vector! (%X, %X)\n", motion_x, motion_y);
* to render the block */
if ((motion_source < upper_motion_limit) ||
(motion_source > lower_motion_limit)) {
// printf (" vp3: help! motion source (%d) out of range (%d..%d)\n",
// motion_source, upper_motion_limit, lower_motion_limit);
printf (" vp3: help! motion source (%d) out of range (%d..%d), fragment %d\n",
motion_source, upper_motion_limit, lower_motion_limit, i);
continue;
}
}
@ -2151,34 +2450,16 @@ printf (" help! got beefy vector! (%X, %X)\n", motion_x, motion_y);
debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
i, s->all_fragments[i].coding_method,
s->all_fragments[i].coeffs[0], dequantizer[0]);
for (j = 0; j < 64; j++)
dequant_block[dezigzag_index[j]] =
s->all_fragments[i].coeffs[j] *
dequantizer[j];
for (j = 0; j < 64; j++)
dequant_block_permuted[s->dsp.idct_permutation[j]] =
dequant_block[j];
debug_idct("dequantized block:\n");
for (m = 0; m < 8; m++) {
for (n = 0; n < 8; n++) {
debug_idct(" %5d", dequant_block[m * 8 + n]);
}
debug_idct("\n");
}
debug_idct("\n");
/* invert DCT and place (or add) in final output */
if (s->all_fragments[i].coding_method == MODE_INTRA) {
dequant_block_permuted[0] += 1024;
s->dsp.idct_put(
vp3_idct_put(s->all_fragments[i].coeffs, dequantizer,
output_plane + s->all_fragments[i].first_pixel,
stride, dequant_block_permuted);
stride);
} else {
s->dsp.idct_add(
vp3_idct_add(s->all_fragments[i].coeffs, dequantizer,
output_plane + s->all_fragments[i].first_pixel,
stride, dequant_block_permuted);
stride);
}
debug_idct("block after idct_%s():\n",
@ -2479,19 +2760,19 @@ if (!s->keyframe) {
}
reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
render_fragments(s, 0, s->width, s->height, 0);
if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
reverse_dc_prediction(s, s->u_fragment_start,
s->fragment_width / 2, s->fragment_height / 2);
reverse_dc_prediction(s, s->v_fragment_start,
s->fragment_width / 2, s->fragment_height / 2);
render_fragments(s, 0, s->width, s->height, 0);
#if 1
render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1);
render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2);
#else
memset(s->current_frame.data[1], 0x80, s->width * s->height / 4);
memset(s->current_frame.data[2], 0x80, s->width * s->height / 4);
#endif
} else {
memset(s->current_frame.data[1], 0x80, s->width * s->height / 4);
memset(s->current_frame.data[2], 0x80, s->width * s->height / 4);
}
#if KEYFRAMES_ONLY
}