mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
lavfi/dnn_backend_tf: Return Specific Error Codes
Switch to returning specific error codes or DNN_GENERIC_ERROR when an error is encountered. For TensorFlow C API errors, currently DNN_GENERIC_ERROR is returned. Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit is contained in:
parent
91af38f2b3
commit
3fa89bd758
@ -90,7 +90,7 @@ static const AVOption dnn_tensorflow_options[] = {
|
||||
|
||||
AVFILTER_DEFINE_CLASS(dnn_tensorflow);
|
||||
|
||||
static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queue);
|
||||
static int execute_model_tf(TFRequestItem *request, Queue *lltask_queue);
|
||||
static void infer_completion_callback(void *args);
|
||||
static inline void destroy_request_item(TFRequestItem **arg);
|
||||
|
||||
@ -152,9 +152,10 @@ static TFInferRequest *tf_create_inference_request(void)
|
||||
*
|
||||
* @param request pointer to the TFRequestItem for inference
|
||||
* @retval DNN_SUCCESS if execution is successful
|
||||
* @retval DNN_ERROR if execution fails
|
||||
* @retval AVERROR(EINVAL) if request is NULL
|
||||
* @retval DNN_GENERIC_ERROR if execution fails
|
||||
*/
|
||||
static DNNReturnType tf_start_inference(void *args)
|
||||
static int tf_start_inference(void *args)
|
||||
{
|
||||
TFRequestItem *request = args;
|
||||
TFInferRequest *infer_request = request->infer_request;
|
||||
@ -164,7 +165,7 @@ static DNNReturnType tf_start_inference(void *args)
|
||||
|
||||
if (!request) {
|
||||
av_log(&tf_model->ctx, AV_LOG_ERROR, "TFRequestItem is NULL\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
TF_SessionRun(tf_model->session, NULL,
|
||||
@ -178,7 +179,7 @@ static DNNReturnType tf_start_inference(void *args)
|
||||
if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) {
|
||||
destroy_request_item(&request);
|
||||
}
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
@ -202,14 +203,14 @@ static inline void destroy_request_item(TFRequestItem **arg) {
|
||||
av_freep(arg);
|
||||
}
|
||||
|
||||
static DNNReturnType extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
|
||||
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
|
||||
{
|
||||
TFModel *tf_model = task->model;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask));
|
||||
if (!lltask) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
task->inference_todo = 1;
|
||||
task->inference_done = 0;
|
||||
@ -217,7 +218,7 @@ static DNNReturnType extract_lltask_from_task(TaskItem *task, Queue *lltask_queu
|
||||
if (ff_queue_push_back(lltask_queue, lltask) < 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
|
||||
av_freep(&lltask);
|
||||
return DNN_ERROR;
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
@ -277,7 +278,7 @@ static TF_Tensor *allocate_input_tensor(const DNNData *input)
|
||||
input_dims[1] * input_dims[2] * input_dims[3] * size);
|
||||
}
|
||||
|
||||
static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input_name)
|
||||
static int get_input_tf(void *model, DNNData *input, const char *input_name)
|
||||
{
|
||||
TFModel *tf_model = model;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
@ -288,7 +289,7 @@ static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input
|
||||
tf_output.oper = TF_GraphOperationByName(tf_model->graph, input_name);
|
||||
if (!tf_output.oper) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
tf_output.index = 0;
|
||||
@ -300,7 +301,7 @@ static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input
|
||||
if (TF_GetCode(status) != TF_OK){
|
||||
TF_DeleteStatus(status);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to get input tensor shape: number of dimension incorrect\n");
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
TF_DeleteStatus(status);
|
||||
|
||||
@ -313,10 +314,10 @@ static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static DNNReturnType get_output_tf(void *model, const char *input_name, int input_width, int input_height,
|
||||
static int get_output_tf(void *model, const char *input_name, int input_width, int input_height,
|
||||
const char *output_name, int *output_width, int *output_height)
|
||||
{
|
||||
DNNReturnType ret;
|
||||
int ret;
|
||||
TFModel *tf_model = model;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
TaskItem task;
|
||||
@ -329,20 +330,21 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
|
||||
.out_frame = NULL,
|
||||
};
|
||||
|
||||
if (ff_dnn_fill_gettingoutput_task(&task, &exec_params, tf_model, input_height, input_width, ctx) != DNN_SUCCESS) {
|
||||
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, tf_model, input_height, input_width, ctx);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (extract_lltask_from_task(&task, tf_model->lltask_queue) != DNN_SUCCESS) {
|
||||
ret = extract_lltask_from_task(&task, tf_model->lltask_queue);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
|
||||
ret = DNN_ERROR;
|
||||
goto err;
|
||||
}
|
||||
|
||||
request = ff_safe_queue_pop_front(tf_model->request_queue);
|
||||
if (!request) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
|
||||
ret = DNN_ERROR;
|
||||
ret = AVERROR(EINVAL);
|
||||
goto err;
|
||||
}
|
||||
|
||||
@ -386,7 +388,7 @@ static int hex_to_data(uint8_t *data, const char *p)
|
||||
return len;
|
||||
}
|
||||
|
||||
static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename)
|
||||
static int load_tf_model(TFModel *tf_model, const char *model_filename)
|
||||
{
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
TF_Buffer *graph_def;
|
||||
@ -407,7 +409,7 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
*/
|
||||
if (strncmp(tf_model->ctx.options.sess_config, "0x", 2) != 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "sess_config should start with '0x'\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
config = tf_model->ctx.options.sess_config + 2;
|
||||
sess_config_length = hex_to_data(NULL, config);
|
||||
@ -415,11 +417,11 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
sess_config = av_mallocz(sess_config_length + AV_INPUT_BUFFER_PADDING_SIZE);
|
||||
if (!sess_config) {
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to allocate memory\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
if (hex_to_data(sess_config, config) < 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to convert hex to data\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
}
|
||||
|
||||
@ -427,7 +429,7 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
if (!graph_def){
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to read model \"%s\" graph\n", model_filename);
|
||||
av_freep(&sess_config);
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
tf_model->graph = TF_NewGraph();
|
||||
tf_model->status = TF_NewStatus();
|
||||
@ -440,7 +442,7 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
TF_DeleteStatus(tf_model->status);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to import serialized graph to model graph\n");
|
||||
av_freep(&sess_config);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
init_op = TF_GraphOperationByName(tf_model->graph, "init");
|
||||
@ -455,7 +457,7 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
TF_DeleteSessionOptions(sess_opts);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to set config for sess options with %s\n",
|
||||
tf_model->ctx.options.sess_config);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
@ -466,7 +468,7 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
TF_DeleteGraph(tf_model->graph);
|
||||
TF_DeleteStatus(tf_model->status);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to create new session with model graph\n");
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
// Run initialization operation with name "init" if it is present in graph
|
||||
@ -481,7 +483,7 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
TF_DeleteGraph(tf_model->graph);
|
||||
TF_DeleteStatus(tf_model->status);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to run session when initializing\n");
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
@ -490,7 +492,7 @@ static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename
|
||||
|
||||
#define NAME_BUFFER_SIZE 256
|
||||
|
||||
static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op,
|
||||
static int add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op,
|
||||
ConvolutionalParams* params, const int layer)
|
||||
{
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
@ -594,7 +596,7 @@ static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_o
|
||||
break;
|
||||
default:
|
||||
avpriv_report_missing_feature(ctx, "convolutional activation function %d", params->activation);
|
||||
return DNN_ERROR;
|
||||
return AVERROR(ENOSYS);
|
||||
}
|
||||
input.oper = *cur_op;
|
||||
TF_AddInput(op_desc, input);
|
||||
@ -609,10 +611,10 @@ err:
|
||||
TF_DeleteTensor(kernel_tensor);
|
||||
TF_DeleteTensor(biases_tensor);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to add conv layer %d\n", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
static int add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
DepthToSpaceParams *params, const int layer)
|
||||
{
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
@ -630,13 +632,13 @@ static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **
|
||||
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
LayerPadParams *params, const int layer)
|
||||
{
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
@ -666,13 +668,13 @@ static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
TF_DeleteTensor(tensor);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
op = TF_FinishOperation(op_desc, tf_model->status);
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
TF_DeleteTensor(tensor);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad");
|
||||
@ -688,13 +690,13 @@ static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
TF_DeleteTensor(tensor);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
DnnLayerMaximumParams *params, const int layer)
|
||||
{
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
@ -716,13 +718,13 @@ static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
TF_DeleteTensor(tensor);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
op = TF_FinishOperation(op_desc, tf_model->status);
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
TF_DeleteTensor(tensor);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer);
|
||||
@ -737,13 +739,13 @@ static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
TF_DeleteTensor(tensor);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer);
|
||||
return DNN_ERROR;
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename)
|
||||
static int load_native_model(TFModel *tf_model, const char *model_filename)
|
||||
{
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
int32_t layer;
|
||||
@ -755,14 +757,14 @@ static DNNReturnType load_native_model(TFModel *tf_model, const char *model_file
|
||||
int32_t *transpose_perm;
|
||||
int64_t transpose_perm_shape[] = {4};
|
||||
int64_t input_shape[] = {1, -1, -1, -1};
|
||||
DNNReturnType layer_add_res;
|
||||
int layer_add_res;
|
||||
DNNModel *model = NULL;
|
||||
NativeModel *native_model;
|
||||
|
||||
model = ff_dnn_load_model_native(model_filename, DFT_PROCESS_FRAME, NULL, NULL);
|
||||
if (!model){
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
native_model = model->model;
|
||||
@ -775,7 +777,7 @@ static DNNReturnType load_native_model(TFModel *tf_model, const char *model_file
|
||||
TF_DeleteGraph(tf_model->graph); \
|
||||
TF_DeleteStatus(tf_model->status); \
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \
|
||||
return DNN_ERROR; \
|
||||
return DNN_GENERIC_ERROR; \
|
||||
}
|
||||
|
||||
op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x");
|
||||
@ -942,19 +944,21 @@ err:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) {
|
||||
static int fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) {
|
||||
DNNData input;
|
||||
LastLevelTaskItem *lltask;
|
||||
TaskItem *task;
|
||||
TFInferRequest *infer_request;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
int ret = 0;
|
||||
|
||||
lltask = ff_queue_pop_front(tf_model->lltask_queue);
|
||||
av_assert0(lltask);
|
||||
task = lltask->task;
|
||||
request->lltask = lltask;
|
||||
|
||||
if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) {
|
||||
ret = get_input_tf(tf_model, &input, task->input_name);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
@ -965,12 +969,14 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
|
||||
infer_request->tf_input = av_malloc(sizeof(TF_Output));
|
||||
if (!infer_request->tf_input) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
|
||||
ret = AVERROR(ENOMEM);
|
||||
goto err;
|
||||
}
|
||||
|
||||
infer_request->tf_input->oper = TF_GraphOperationByName(tf_model->graph, task->input_name);
|
||||
if (!infer_request->tf_input->oper){
|
||||
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
|
||||
ret = DNN_GENERIC_ERROR;
|
||||
goto err;
|
||||
}
|
||||
infer_request->tf_input->index = 0;
|
||||
@ -978,6 +984,7 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
|
||||
infer_request->input_tensor = allocate_input_tensor(&input);
|
||||
if (!infer_request->input_tensor){
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
|
||||
ret = AVERROR(ENOMEM);
|
||||
goto err;
|
||||
}
|
||||
input.data = (float *)TF_TensorData(infer_request->input_tensor);
|
||||
@ -1003,12 +1010,14 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
|
||||
infer_request->tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output));
|
||||
if (infer_request->tf_outputs == NULL) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n");
|
||||
ret = AVERROR(ENOMEM);
|
||||
goto err;
|
||||
}
|
||||
|
||||
infer_request->output_tensors = av_calloc(task->nb_output, sizeof(*infer_request->output_tensors));
|
||||
if (!infer_request->output_tensors) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n");
|
||||
ret = AVERROR(ENOMEM);
|
||||
goto err;
|
||||
}
|
||||
|
||||
@ -1017,6 +1026,7 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
|
||||
infer_request->tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]);
|
||||
if (!infer_request->tf_outputs[i].oper) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]);
|
||||
ret = DNN_GENERIC_ERROR;
|
||||
goto err;
|
||||
}
|
||||
infer_request->tf_outputs[i].index = 0;
|
||||
@ -1025,7 +1035,7 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
|
||||
return DNN_SUCCESS;
|
||||
err:
|
||||
tf_free_request(infer_request);
|
||||
return DNN_ERROR;
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void infer_completion_callback(void *args) {
|
||||
@ -1086,12 +1096,13 @@ err:
|
||||
}
|
||||
}
|
||||
|
||||
static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queue)
|
||||
static int execute_model_tf(TFRequestItem *request, Queue *lltask_queue)
|
||||
{
|
||||
TFModel *tf_model;
|
||||
TFContext *ctx;
|
||||
LastLevelTaskItem *lltask;
|
||||
TaskItem *task;
|
||||
int ret = 0;
|
||||
|
||||
if (ff_queue_size(lltask_queue) == 0) {
|
||||
destroy_request_item(&request);
|
||||
@ -1103,7 +1114,8 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queu
|
||||
tf_model = task->model;
|
||||
ctx = &tf_model->ctx;
|
||||
|
||||
if (fill_model_input_tf(tf_model, request) != DNN_SUCCESS) {
|
||||
ret = fill_model_input_tf(tf_model, request);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
@ -1112,58 +1124,64 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queu
|
||||
goto err;
|
||||
}
|
||||
return DNN_SUCCESS;
|
||||
} else {
|
||||
if (tf_start_inference(request) != DNN_SUCCESS) {
|
||||
}
|
||||
else {
|
||||
ret = tf_start_inference(request);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
goto err;
|
||||
}
|
||||
infer_completion_callback(request);
|
||||
return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR;
|
||||
return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_GENERIC_ERROR;
|
||||
}
|
||||
err:
|
||||
tf_free_request(request->infer_request);
|
||||
if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) {
|
||||
destroy_request_item(&request);
|
||||
}
|
||||
return DNN_ERROR;
|
||||
return ret;
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params)
|
||||
int ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params)
|
||||
{
|
||||
TFModel *tf_model = model->model;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
TaskItem *task;
|
||||
TFRequestItem *request;
|
||||
int ret = 0;
|
||||
|
||||
if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) {
|
||||
return DNN_ERROR;
|
||||
ret = ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
task = av_malloc(sizeof(*task));
|
||||
if (!task) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
if (ff_dnn_fill_task(task, exec_params, tf_model, ctx->options.async, 1) != DNN_SUCCESS) {
|
||||
ret = ff_dnn_fill_task(task, exec_params, tf_model, ctx->options.async, 1);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
av_freep(&task);
|
||||
return DNN_ERROR;
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (ff_queue_push_back(tf_model->task_queue, task) < 0) {
|
||||
av_freep(&task);
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
if (extract_lltask_from_task(task, tf_model->lltask_queue) != DNN_SUCCESS) {
|
||||
ret = extract_lltask_from_task(task, tf_model->lltask_queue);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
|
||||
return DNN_ERROR;
|
||||
return ret;
|
||||
}
|
||||
|
||||
request = ff_safe_queue_pop_front(tf_model->request_queue);
|
||||
if (!request) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
return execute_model_tf(request, tf_model->lltask_queue);
|
||||
}
|
||||
@ -1174,12 +1192,12 @@ DNNAsyncStatusType ff_dnn_get_result_tf(const DNNModel *model, AVFrame **in, AVF
|
||||
return ff_dnn_get_result_common(tf_model->task_queue, in, out);
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_flush_tf(const DNNModel *model)
|
||||
int ff_dnn_flush_tf(const DNNModel *model)
|
||||
{
|
||||
TFModel *tf_model = model->model;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
TFRequestItem *request;
|
||||
DNNReturnType ret;
|
||||
int ret;
|
||||
|
||||
if (ff_queue_size(tf_model->lltask_queue) == 0) {
|
||||
// no pending task need to flush
|
||||
@ -1189,7 +1207,7 @@ DNNReturnType ff_dnn_flush_tf(const DNNModel *model)
|
||||
request = ff_safe_queue_pop_front(tf_model->request_queue);
|
||||
if (!request) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
|
||||
return DNN_ERROR;
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
ret = fill_model_input_tf(tf_model, request);
|
||||
|
@ -31,9 +31,9 @@
|
||||
|
||||
DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params);
|
||||
int ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params);
|
||||
DNNAsyncStatusType ff_dnn_get_result_tf(const DNNModel *model, AVFrame **in, AVFrame **out);
|
||||
DNNReturnType ff_dnn_flush_tf(const DNNModel *model);
|
||||
int ff_dnn_flush_tf(const DNNModel *model);
|
||||
|
||||
void ff_dnn_free_model_tf(DNNModel **model);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user