diff --git a/libavfilter/vf_v360.c b/libavfilter/vf_v360.c index b3443f2001..66e3f09f6d 100644 --- a/libavfilter/vf_v360.c +++ b/libavfilter/vf_v360.c @@ -942,33 +942,33 @@ static void cube_to_xyz(const V360Context *s, switch (direction) { case RIGHT: l_x = 1.f; - l_y = -vf; - l_z = uf; + l_y = vf; + l_z = -uf; break; case LEFT: l_x = -1.f; - l_y = -vf; - l_z = -uf; + l_y = vf; + l_z = uf; break; case UP: - l_x = uf; - l_y = 1.f; - l_z = -vf; - break; - case DOWN: l_x = uf; l_y = -1.f; l_z = vf; break; + case DOWN: + l_x = uf; + l_y = 1.f; + l_z = -vf; + break; case FRONT: l_x = uf; - l_y = -vf; - l_z = -1.f; + l_y = vf; + l_z = 1.f; break; case BACK: l_x = -uf; - l_y = -vf; - l_z = 1.f; + l_y = vf; + l_z = -1.f; break; default: av_assert0(0); @@ -995,8 +995,8 @@ static void xyz_to_cube(const V360Context *s, const float *vec, float *uf, float *vf, int *direction) { - const float phi = atan2f(vec[0], -vec[2]); - const float theta = asinf(-vec[1]); + const float phi = atan2f(vec[0], vec[2]); + const float theta = asinf(vec[1]); float phi_norm, theta_threshold; int face; @@ -1023,27 +1023,27 @@ static void xyz_to_cube(const V360Context *s, switch (*direction) { case RIGHT: - *uf = vec[2] / vec[0]; - *vf = -vec[1] / vec[0]; - break; - case LEFT: - *uf = vec[2] / vec[0]; + *uf = -vec[2] / vec[0]; *vf = vec[1] / vec[0]; break; - case UP: - *uf = vec[0] / vec[1]; - *vf = -vec[2] / vec[1]; + case LEFT: + *uf = -vec[2] / vec[0]; + *vf = -vec[1] / vec[0]; break; - case DOWN: + case UP: *uf = -vec[0] / vec[1]; *vf = -vec[2] / vec[1]; break; + case DOWN: + *uf = vec[0] / vec[1]; + *vf = -vec[2] / vec[1]; + break; case FRONT: - *uf = -vec[0] / vec[2]; + *uf = vec[0] / vec[2]; *vf = vec[1] / vec[2]; break; case BACK: - *uf = -vec[0] / vec[2]; + *uf = vec[0] / vec[2]; *vf = -vec[1] / vec[2]; break; default: @@ -1627,9 +1627,9 @@ static int equirect_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - vec[0] = cos_theta * sin_phi; - vec[1] = -sin_theta; - vec[2] = -cos_theta * cos_phi; + vec[0] = cos_theta * sin_phi; + vec[1] = sin_theta; + vec[2] = cos_theta * cos_phi; return 1; } @@ -1656,9 +1656,9 @@ static int hequirect_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - vec[0] = cos_theta * sin_phi; - vec[1] = -sin_theta; - vec[2] = -cos_theta * cos_phi; + vec[0] = cos_theta * sin_phi; + vec[1] = sin_theta; + vec[2] = cos_theta * cos_phi; return 1; } @@ -1700,9 +1700,9 @@ static int stereographic_to_xyz(const V360Context *s, const float theta = atanf(r) * 2.f; const float sin_theta = sinf(theta); - vec[0] = x / r * sin_theta; - vec[1] = -y / r * sin_theta; - vec[2] = -cosf(theta); + vec[0] = x / r * sin_theta; + vec[1] = y / r * sin_theta; + vec[2] = cosf(theta); normalize_vector(vec); @@ -1742,11 +1742,11 @@ static int xyz_to_stereographic(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float theta = acosf(-vec[2]); + const float theta = acosf(vec[2]); const float r = tanf(theta * 0.5f); const float c = r / hypotf(vec[0], vec[1]); - const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0]; - const float y = -vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1]; + const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0]; + const float y = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1]; const float uf = (x + 1.f) * width / 2.f; const float vf = (y + 1.f) * height / 2.f; @@ -1785,8 +1785,8 @@ static int xyz_to_equirect(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0]; - const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1]; + const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0]; + const float theta = asinf(vec[1]) * s->input_mirror_modifier[1]; const float uf = (phi / M_PI + 1.f) * width / 2.f; const float vf = (theta / M_PI_2 + 1.f) * height / 2.f; @@ -1823,8 +1823,8 @@ static int xyz_to_hequirect(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0]; - const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1]; + const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0]; + const float theta = asinf(vec[1]) * s->input_mirror_modifier[1]; const float uf = (phi / M_PI_2 + 1.f) * width / 2.f; const float vf = (theta / M_PI_2 + 1.f) * height / 2.f; @@ -1883,11 +1883,11 @@ static int xyz_to_flat(const V360Context *s, const float theta = acosf(vec[2]); const float r = tanf(theta); const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height); - const float zf = -vec[2]; + const float zf = vec[2]; const float h = hypotf(vec[0], vec[1]); const float c = h <= 1e-6f ? 1.f : rr / h; - float uf = -vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0]; - float vf = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1]; + float uf = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0]; + float vf = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1]; int visible, ui, vi; uf = zf >= 0.f ? (uf + 1.f) * width / 2.f : 0.f; @@ -1927,8 +1927,8 @@ static int xyz_to_mercator(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0]; - const float theta = -vec[1] * s->input_mirror_modifier[1]; + const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0]; + const float theta = vec[1] * s->input_mirror_modifier[1]; const float uf = (phi / M_PI + 1.f) * width / 2.f; const float vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f; @@ -1969,12 +1969,12 @@ static int mercator_to_xyz(const V360Context *s, const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); - const float sin_theta = -2.f * expf(y) / div; - const float cos_theta = -(expf(2.f * y) - 1.f) / div; + const float sin_theta = 2.f * expf(y) / div; + const float cos_theta = (expf(2.f * y) - 1.f) / div; - vec[0] = sin_theta * cos_phi; - vec[1] = cos_theta; - vec[2] = sin_theta * sin_phi; + vec[0] = -sin_theta * cos_phi; + vec[1] = cos_theta; + vec[2] = sin_theta * sin_phi; return 1; } @@ -1996,10 +1996,10 @@ static int xyz_to_ball(const V360Context *s, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float l = hypotf(vec[0], vec[1]); - const float r = sqrtf(1.f + vec[2]) / M_SQRT2; + const float r = sqrtf(1.f - vec[2]) / M_SQRT2; const float uf = (1.f + r * vec[0] * s->input_mirror_modifier[0] / (l > 0.f ? l : 1.f)) * width * 0.5f; - const float vf = (1.f - r * vec[1] * s->input_mirror_modifier[1] / (l > 0.f ? l : 1.f)) * height * 0.5f; + const float vf = (1.f + r * vec[1] * s->input_mirror_modifier[1] / (l > 0.f ? l : 1.f)) * height * 0.5f; const int ui = floorf(uf); const int vi = floorf(vf); @@ -2038,13 +2038,13 @@ static int ball_to_xyz(const V360Context *s, if (l <= 1.f) { const float z = 2.f * l * sqrtf(1.f - l * l); - vec[0] = z * x / (l > 0.f ? l : 1.f); - vec[1] = -z * y / (l > 0.f ? l : 1.f); - vec[2] = -1.f + 2.f * l * l; + vec[0] = z * x / (l > 0.f ? l : 1.f); + vec[1] = z * y / (l > 0.f ? l : 1.f); + vec[2] = 1.f - 2.f * l * l; } else { - vec[0] = 0.f; - vec[1] = -1.f; - vec[2] = 0.f; + vec[0] = 0.f; + vec[1] = 1.f; + vec[2] = 0.f; return 0; } @@ -2081,9 +2081,9 @@ static int hammer_to_xyz(const V360Context *s, const float w = sqrtf(1.f - 2.f * yy * z * z); - vec[0] = w * 2.f * a * b / (aa + bb); - vec[1] = -M_SQRT2 * y * z; - vec[2] = -w * (bb - aa) / (aa + bb); + vec[0] = w * 2.f * a * b / (aa + bb); + vec[1] = M_SQRT2 * y * z; + vec[2] = w * (bb - aa) / (aa + bb); normalize_vector(vec); @@ -2106,11 +2106,11 @@ static int xyz_to_hammer(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float theta = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0]; + const float theta = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0]; const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f)); const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z; - const float y = -vec[1] / z * s->input_mirror_modifier[1]; + const float y = vec[1] / z * s->input_mirror_modifier[1]; const float uf = (x + 1.f) * width / 2.f; const float vf = (y + 1.f) * height / 2.f; @@ -2153,9 +2153,9 @@ static int sinusoidal_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - vec[0] = cos_theta * sin_phi; - vec[1] = -sin_theta; - vec[2] = -cos_theta * cos_phi; + vec[0] = cos_theta * sin_phi; + vec[1] = sin_theta; + vec[2] = cos_theta * cos_phi; normalize_vector(vec); @@ -2178,8 +2178,8 @@ static int xyz_to_sinusoidal(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1]; - const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] * cosf(theta); + const float theta = asinf(vec[1]) * s->input_mirror_modifier[1]; + const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0] * cosf(theta); const float uf = (phi / M_PI + 1.f) * width / 2.f; const float vf = (theta / M_PI_2 + 1.f) * height / 2.f; @@ -2350,33 +2350,33 @@ static int eac_to_xyz(const V360Context *s, switch (face) { case TOP_LEFT: l_x = -1.f; - l_y = -vf; - l_z = -uf; + l_y = vf; + l_z = uf; break; case TOP_MIDDLE: l_x = uf; - l_y = -vf; - l_z = -1.f; + l_y = vf; + l_z = 1.f; break; case TOP_RIGHT: l_x = 1.f; - l_y = -vf; - l_z = uf; + l_y = vf; + l_z = -uf; break; case BOTTOM_LEFT: l_x = -vf; - l_y = -1.f; - l_z = uf; + l_y = 1.f; + l_z = -uf; break; case BOTTOM_MIDDLE: l_x = -vf; - l_y = uf; - l_z = 1.f; + l_y = -uf; + l_z = -1.f; break; case BOTTOM_RIGHT: l_x = -vf; - l_y = 1.f; - l_z = -uf; + l_y = -1.f; + l_z = uf; break; default: av_assert0(0); @@ -2482,12 +2482,12 @@ static int flat_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { - const float l_x = s->flat_range[0] * ((2.f * i + 0.5f) / width - 1.f); - const float l_y = -s->flat_range[1] * ((2.f * j + 0.5f) / height - 1.f); + const float l_x = s->flat_range[0] * ((2.f * i + 0.5f) / width - 1.f); + const float l_y = s->flat_range[1] * ((2.f * j + 0.5f) / height - 1.f); - vec[0] = l_x; - vec[1] = l_y; - vec[2] = -1.f; + vec[0] = l_x; + vec[1] = l_y; + vec[2] = 1.f; normalize_vector(vec); @@ -2528,8 +2528,8 @@ static int fisheye_to_xyz(const V360Context *s, const float uf = s->flat_range[0] * ((2.f * i) / width - 1.f); const float vf = s->flat_range[1] * ((2.f * j + 1.f) / height - 1.f); - const float phi = -atan2f(vf, uf); - const float theta = -M_PI_2 * (1.f - hypotf(uf, vf)); + const float phi = atan2f(vf, uf); + const float theta = M_PI_2 * (1.f - hypotf(uf, vf)); vec[0] = cosf(theta) * cosf(phi); vec[1] = cosf(theta) * sinf(phi); @@ -2575,10 +2575,10 @@ static int xyz_to_fisheye(const V360Context *s, { const float h = hypotf(vec[0], vec[1]); const float lh = h > 0.f ? h : 1.f; - const float phi = atan2f(h, -vec[2]) / M_PI; + const float phi = atan2f(h, vec[2]) / M_PI; - float uf = vec[0] / lh * phi * s->input_mirror_modifier[0] / s->iflat_range[0]; - float vf = -vec[1] / lh * phi * s->input_mirror_modifier[1] / s->iflat_range[1]; + float uf = vec[0] / lh * phi * s->input_mirror_modifier[0] / s->iflat_range[0]; + float vf = vec[1] / lh * phi * s->input_mirror_modifier[1] / s->iflat_range[1]; const int visible = hypotf(uf, vf) <= 0.5f; int ui, vi; @@ -2624,8 +2624,8 @@ static int pannini_to_xyz(const V360Context *s, const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f); const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f); const float S = (d + 1.f) / (d + clon); - const float lon = -(M_PI + atan2f(uf, S * clon)); - const float lat = -atan2f(vf, S); + const float lon = atan2f(uf, S * clon); + const float lat = atan2f(vf, S); vec[0] = sinf(lon) * cosf(lat); vec[1] = sinf(lat); @@ -2678,9 +2678,9 @@ static int cylindrical_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - vec[0] = cos_theta * sin_phi; - vec[1] = -sin_theta; - vec[2] = -cos_theta * cos_phi; + vec[0] = cos_theta * sin_phi; + vec[1] = sin_theta; + vec[2] = cos_theta * cos_phi; normalize_vector(vec); @@ -2720,8 +2720,8 @@ static int xyz_to_cylindrical(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] / s->iflat_range[0]; - const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1]; + const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0] / s->iflat_range[0]; + const float theta = asinf(vec[1]) * s->input_mirror_modifier[1]; const float uf = (phi + 1.f) * (width - 1) / 2.f; const float vf = (tanf(theta) / s->iflat_range[1] + 1.f) * height / 2.f; @@ -2779,13 +2779,13 @@ static int perspective_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - vec[0] = cos_theta * sin_phi; - vec[1] = sin_theta; - vec[2] = -cos_theta * cos_phi; + vec[0] = cos_theta * sin_phi; + vec[1] = sin_theta; + vec[2] = cos_theta * cos_phi; } else { - vec[0] = 0.f; - vec[1] = -1.f; - vec[2] = 0.f; + vec[0] = 0.f; + vec[1] = 1.f; + vec[2] = 0.f; return 0; } @@ -2896,7 +2896,7 @@ static int dfisheye_to_xyz(const V360Context *s, const float eh = height; const int ei = i >= ew ? i - ew : i; - const float m = i >= ew ? -1.f : 1.f; + const float m = i >= ew ? 1.f : -1.f; const float uf = ((2.f * ei) / ew - 1.f) * scale; const float vf = ((2.f * j + 1.f) / eh - 1.f) * scale; @@ -2908,8 +2908,8 @@ static int dfisheye_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - vec[0] = cos_theta * m * -uf / lh; - vec[1] = cos_theta * -vf / lh; + vec[0] = cos_theta * m * uf / lh; + vec[1] = cos_theta * vf / lh; vec[2] = sin_theta; normalize_vector(vec); @@ -2942,16 +2942,16 @@ static int xyz_to_dfisheye(const V360Context *s, const float lh = h > 0.f ? h : 1.f; const float theta = acosf(fabsf(vec[2])) / M_PI; - float uf = (theta * (-vec[0] / lh) * s->input_mirror_modifier[0] * scale + 0.5f) * ew; - float vf = (theta * (-vec[1] / lh) * s->input_mirror_modifier[1] * scale + 0.5f) * eh; + float uf = (theta * (vec[0] / lh) * s->input_mirror_modifier[0] * scale + 0.5f) * ew; + float vf = (theta * (vec[1] / lh) * s->input_mirror_modifier[1] * scale + 0.5f) * eh; int ui, vi; int u_shift; if (vec[2] >= 0.f) { - u_shift = 0; - } else { u_shift = ceilf(ew); + } else { + u_shift = 0; uf = ew - uf; } @@ -3002,9 +3002,9 @@ static int barrel_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - l_x = cos_theta * sin_phi; - l_y = -sin_theta; - l_z = -cos_theta * cos_phi; + l_x = cos_theta * sin_phi; + l_y = sin_theta; + l_z = cos_theta * cos_phi; } else { const int ew = width / 5; const int eh = height / 2; @@ -3019,8 +3019,8 @@ static int barrel_to_xyz(const V360Context *s, vf /= scale; l_x = uf; - l_y = 1.f; - l_z = -vf; + l_y = -1.f; + l_z = vf; } else { // DOWN uf = 2.f * (i - 4 * ew) / ew - 1.f; vf = 2.f * (j - eh) / eh - 1.f; @@ -3029,8 +3029,8 @@ static int barrel_to_xyz(const V360Context *s, vf /= scale; l_x = uf; - l_y = -1.f; - l_z = vf; + l_y = 1.f; + l_z = -vf; } } @@ -3061,8 +3061,8 @@ static int xyz_to_barrel(const V360Context *s, { const float scale = 0.99f; - const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0]; - const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1]; + const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0]; + const float theta = asinf(vec[1]) * s->input_mirror_modifier[1]; const float theta_range = M_PI_4; int ew, eh; @@ -3086,11 +3086,11 @@ static int xyz_to_barrel(const V360Context *s, u_shift = s->ih_flip ? 0 : 4 * ew; if (theta < 0.f) { // UP - uf = vec[0] / vec[1]; + uf = -vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = 0; } else { // DOWN - uf = -vec[0] / vec[1]; + uf = vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = eh; } @@ -3134,8 +3134,8 @@ static int xyz_to_barrelsplit(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { - const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0]; - const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1]; + const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0]; + const float theta = asinf(vec[1]) * s->input_mirror_modifier[1]; const float theta_range = M_PI_4; @@ -3174,23 +3174,23 @@ static int xyz_to_barrelsplit(const V360Context *s, if (theta <= 0.f && theta >= -M_PI_2 && phi <= M_PI_2 && phi >= -M_PI_2) { - uf = vec[0] / vec[1]; + uf = -vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = 0; v_offset = -eh; } else if (theta >= 0.f && theta <= M_PI_2 && phi <= M_PI_2 && phi >= -M_PI_2) { - uf = -vec[0] / vec[1]; + uf = vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = height * 0.25f; } else if (theta <= 0.f && theta >= -M_PI_2) { - uf = -vec[0] / vec[1]; + uf = vec[0] / vec[1]; vf = vec[2] / vec[1]; v_shift = height * 0.5f; v_offset = -eh; } else { - uf = vec[0] / vec[1]; - vf = vec[2] / vec[1]; + uf = -vec[0] / vec[1]; + vf = vec[2] / vec[1]; v_shift = height * 0.75f; } @@ -3241,7 +3241,7 @@ static int barrelsplit_to_xyz(const V360Context *s, const float back = floorf(y * 2.f); - const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back + 1.f) * M_PI; + const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back) * M_PI; const float theta = (y - 0.25f - 0.5f * back) / scaleh * M_PI; const float sin_phi = sinf(phi); @@ -3249,9 +3249,9 @@ static int barrelsplit_to_xyz(const V360Context *s, const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); - l_x = -cos_theta * sin_phi; - l_y = -sin_theta; - l_z = cos_theta * cos_phi; + l_x = cos_theta * sin_phi; + l_y = sin_theta; + l_z = cos_theta * cos_phi; } else { const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad; const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 4.f) : 1.f - s->out_pad; @@ -3268,8 +3268,8 @@ static int barrelsplit_to_xyz(const V360Context *s, vf = 0.5f - vf; l_x = (0.5f - uf) / scalew; - l_y = 0.5f; - l_z = (-0.5f + vf) / scaleh; + l_y = -0.5f; + l_z = (0.5f - vf) / scaleh; break; case 1: vf = y * 2.f; @@ -3277,23 +3277,23 @@ static int barrelsplit_to_xyz(const V360Context *s, vf = 1.f - (vf - 0.5f); l_x = (0.5f - uf) / scalew; - l_y = -0.5f; - l_z = (0.5f - vf) / scaleh; + l_y = 0.5f; + l_z = (-0.5f + vf) / scaleh; break; case 2: vf = y * 2.f - 0.5f; vf = 1.f - (1.f - vf); l_x = (0.5f - uf) / scalew; - l_y = 0.5f; - l_z = (-0.5f + vf) / scaleh; + l_y = -0.5f; + l_z = (0.5f - vf) / scaleh; break; case 3: vf = y * 2.f - 1.5f; l_x = (0.5f - uf) / scalew; - l_y = -0.5f; - l_z = (0.5f - vf) / scaleh; + l_y = 0.5f; + l_z = (-0.5f + vf) / scaleh; break; } } @@ -3325,39 +3325,39 @@ static int tspyramid_to_xyz(const V360Context *s, const float y = (j + 0.5f) / height; if (x < 0.5f) { - vec[0] = x * 4.f - 1.f; - vec[1] = -(y * 2.f - 1.f); - vec[2] = -1.f; + vec[0] = x * 4.f - 1.f; + vec[1] = (y * 2.f - 1.f); + vec[2] = 1.f; } else if (x >= 0.6875f && x < 0.8125f && y >= 0.375f && y < 0.625f) { vec[0] = -(x - 0.6875f) * 16.f + 1.f; - vec[1] = -(y - 0.375f) * 8.f + 1.f; - vec[2] = 1.f; + vec[1] = (y - 0.375f) * 8.f - 1.f; + vec[2] = -1.f; } else if (0.5f <= x && x < 0.6875f && ((0.f <= y && y < 0.375f && y >= 2.f * (x - 0.5f)) || (0.375f <= y && y < 0.625f) || (0.625f <= y && y < 1.f && y <= 2.f * (1.f - x)))) { vec[0] = 1.f; - vec[1] = -2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) + 1.f; - vec[2] = 2.f * (x - 0.5f) / 0.1875f - 1.f; + vec[1] = 2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) - 1.f; + vec[2] = -2.f * (x - 0.5f) / 0.1875f + 1.f; } else if (0.8125f <= x && x < 1.f && ((0.f <= y && y < 0.375f && x >= (1.f - y / 2.f)) || (0.375f <= y && y < 0.625f) || (0.625f <= y && y < 1.f && y <= (2.f * x - 1.f)))) { vec[0] = -1.f; - vec[1] = -2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) + 1.f; - vec[2] = -2.f * (x - 0.8125f) / 0.1875f + 1.f; + vec[1] = 2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) - 1.f; + vec[2] = 2.f * (x - 0.8125f) / 0.1875f - 1.f; } else if (0.f <= y && y < 0.375f && ((0.5f <= x && x < 0.8125f && y < 2.f * (x - 0.5f)) || (0.6875f <= x && x < 0.8125f) || (0.8125f <= x && x < 1.f && x < (1.f - y / 2.f)))) { vec[0] = 2.f * (1.f - x - 0.5f * y) / (0.5f - y) - 1.f; - vec[1] = 1.f; - vec[2] = -2.f * (0.375f - y) / 0.375f + 1.f; + vec[1] = -1.f; + vec[2] = 2.f * (0.375f - y) / 0.375f - 1.f; } else { vec[0] = 2.f * (0.5f - x + 0.5f * y) / (y - 0.5f) - 1.f; - vec[1] = -1.f; - vec[2] = 2.f * (1.f - y) / 0.375f - 1.f; + vec[1] = 1.f; + vec[2] = -2.f * (1.f - y) / 0.375f + 1.f; } normalize_vector(vec); @@ -3460,8 +3460,8 @@ static inline void calculate_rotation_matrix(float yaw, float pitch, float roll, const float pitch_rad = pitch * M_PI / 180.f; const float roll_rad = roll * M_PI / 180.f; - const float sin_yaw = sinf(-yaw_rad); - const float cos_yaw = cosf(-yaw_rad); + const float sin_yaw = sinf(yaw_rad); + const float cos_yaw = cosf(yaw_rad); const float sin_pitch = sinf(pitch_rad); const float cos_pitch = cosf(pitch_rad); const float sin_roll = sinf(roll_rad);