1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

libavfilter/vf_dnn_detect: Add two outputs ssd support

For this kind of model, we can directly use its output as final result
just like ssd model. The difference is that it splits output into two
tensors. [x_min, y_min, x_max, y_max, confidence] and [lable_id].

Model example refer to: https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/person-detection-0106

Signed-off-by: Wenbin Chen <wenbin.chen@intel.com>
Reviewed-by: Guo Yejun <yejun.guo@intel.com>
This commit is contained in:
Wenbin Chen 2023-12-27 12:16:58 +08:00 committed by Guo Yejun
parent 86435582a6
commit 56c5930ec3

View File

@ -359,24 +359,48 @@ static int dnn_detect_post_proc_yolov3(AVFrame *frame, DNNData *output,
return 0;
}
static int dnn_detect_post_proc_ssd(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
static int dnn_detect_post_proc_ssd(AVFrame *frame, DNNData *output, int nb_outputs,
AVFilterContext *filter_ctx)
{
DnnDetectContext *ctx = filter_ctx->priv;
float conf_threshold = ctx->confidence;
int proposal_count = output->height;
int detect_size = output->width;
float *detections = output->data;
int proposal_count = 0;
int detect_size = 0;
float *detections = NULL, *labels = NULL;
int nb_bboxes = 0;
AVDetectionBBoxHeader *header;
AVDetectionBBox *bbox;
int scale_w = ctx->scale_width;
int scale_h = ctx->scale_height;
if (output->width != 7) {
if (nb_outputs == 1 && output->width == 7) {
proposal_count = output->height;
detect_size = output->width;
detections = output->data;
} else if (nb_outputs == 2 && output[0].width == 5) {
proposal_count = output[0].height;
detect_size = output[0].width;
detections = output[0].data;
labels = output[1].data;
} else if (nb_outputs == 2 && output[1].width == 5) {
proposal_count = output[1].height;
detect_size = output[1].width;
detections = output[1].data;
labels = output[0].data;
} else {
av_log(filter_ctx, AV_LOG_ERROR, "Model output shape doesn't match ssd requirement.\n");
return AVERROR(EINVAL);
}
if (proposal_count == 0)
return 0;
for (int i = 0; i < proposal_count; ++i) {
float conf = detections[i * detect_size + 2];
float conf;
if (nb_outputs == 1)
conf = detections[i * detect_size + 2];
else
conf = detections[i * detect_size + 4];
if (conf < conf_threshold) {
continue;
}
@ -398,12 +422,24 @@ static int dnn_detect_post_proc_ssd(AVFrame *frame, DNNData *output, AVFilterCon
for (int i = 0; i < proposal_count; ++i) {
int av_unused image_id = (int)detections[i * detect_size + 0];
int label_id = (int)detections[i * detect_size + 1];
float conf = detections[i * detect_size + 2];
float x0 = detections[i * detect_size + 3];
float y0 = detections[i * detect_size + 4];
float x1 = detections[i * detect_size + 5];
float y1 = detections[i * detect_size + 6];
int label_id;
float conf, x0, y0, x1, y1;
if (nb_outputs == 1) {
label_id = (int)detections[i * detect_size + 1];
conf = detections[i * detect_size + 2];
x0 = detections[i * detect_size + 3];
y0 = detections[i * detect_size + 4];
x1 = detections[i * detect_size + 5];
y1 = detections[i * detect_size + 6];
} else {
label_id = (int)labels[i];
x0 = detections[i * detect_size] / scale_w;
y0 = detections[i * detect_size + 1] / scale_h;
x1 = detections[i * detect_size + 2] / scale_w;
y1 = detections[i * detect_size + 3] / scale_h;
conf = detections[i * detect_size + 4];
}
if (conf < conf_threshold) {
continue;
@ -447,7 +483,7 @@ static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, int nb_outpu
switch (ctx->model_type) {
case DDMT_SSD:
ret = dnn_detect_post_proc_ssd(frame, output, filter_ctx);
ret = dnn_detect_post_proc_ssd(frame, output, nb_outputs, filter_ctx);
if (ret < 0)
return ret;
break;