1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

Merge remote-tracking branch 'qatar/master'

* qatar/master:
  lavfi: add compand audio filter

Conflicts:
	Changelog
	doc/filters.texi
	libavfilter/Makefile
	libavfilter/af_compand.c
	libavfilter/allfilters.c
	libavfilter/version.h

The filter is added as new one so as to ease clean merging of its changes
in debug-able steps
See: 6b68e2a43b3407522080be50a2a19cff2f9715ef
Merged-by: Michael Niedermayer <michaelni@gmx.at>
This commit is contained in:
Michael Niedermayer 2014-02-26 11:18:16 +01:00
commit 5d166de258
5 changed files with 627 additions and 41 deletions

View File

@ -1267,79 +1267,76 @@ side_right.wav
@end example @end example
@section compand @section compand
Compress or expand audio dynamic range. Compress or expand audio dynamic range.
A description of the accepted options follows. A description of the accepted options follows.
@table @option @table @option
@item attacks @item attacks
@item decays @item decays
Set list of times in seconds for each channel over which the instantaneous Set list of times in seconds for each channel over which the instantaneous level
level of the input signal is averaged to determine its volume. of the input signal is averaged to determine its volume. @var{attacks} refers to
@option{attacks} refers to increase of volume and @option{decays} refers increase of volume and @var{decays} refers to decrease of volume. For most
to decrease of volume. situations, the attack time (response to the audio getting louder) should be
For most situations, the attack time (response to the audio getting louder) shorter than the decay time because the human ear is more sensitive to sudden
should be shorter than the decay time because the human ear is more sensitive loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and
to sudden loud audio than sudden soft audio. a typical value for decay is 0.8 seconds.
Typical value for attack is @code{0.3} seconds and for decay @code{0.8}
seconds.
@item points @item points
Set list of points for transfer function, specified in dB relative to maximum Set list of points for the transfer function, specified in dB relative to the
possible signal amplitude. maximum possible signal amplitude. Each key points list must be defined using
Each key points list need to be defined using the following syntax: the following syntax: @code{x0/y0|x1/y1|x2/y2|....} or
@code{x0/y0 x1/y1 x2/y2 ...}. @code{x0/y0 x1/y1 x2/y2 ....}
The input values must be in strictly increasing order but the transfer The input values must be in strictly increasing order but the transfer function
function does not have to be monotonically rising. does not have to be monotonically rising. The point @code{0/0} is assumed but
The point @code{0/0} is assumed but may be overridden (by @code{0/out-dBn}). may be overridden (by @code{0/out-dBn}). Typical values for the transfer
Typical values for the transfer function are @code{-70/-70 -60/-20}. function are @code{-70/-70|-60/-20}.
@item soft-knee @item soft-knee
Set amount for which the points at where adjacent line segments on the Set the curve radius in dB for all joints. Defaults to 0.01.
transfer function meet will be rounded. Defaults is @code{0.01}.
@item gain @item gain
Set additional gain in dB to be applied at all points on the transfer function Set additional gain in dB to be applied at all points on the transfer function.
and allows easy adjustment of the overall gain. This allows easy adjustment of the overall gain. Defaults to 0.
Default is @code{0}.
@item volume @item volume
Set initial volume in dB to be assumed for each channel when filtering starts. Set initial volume in dB to be assumed for each channel when filtering starts.
This permits the user to supply a nominal level initially, so that, This permits the user to supply a nominal level initially, so that, for
for example, a very large gain is not applied to initial signal levels before example, a very large gain is not applied to initial signal levels before the
the companding has begun to operate. A typical value for audio which is companding has begun to operate. A typical value for audio which is initially
initially quiet is -90 dB. Default is @code{0}. quiet is -90 dB. Defaults to 0.
@item delay @item delay
Set delay in seconds. Default is @code{0}. The input audio Set delay in seconds. The input audio is analyzed immediately, but audio is
is analysed immediately, but audio is delayed before being fed to the delayed before being fed to the volume adjuster. Specifying a delay
volume adjuster. Specifying a delay approximately equal to the attack/decay approximately equal to the attack/decay times allows the filter to effectively
times allows the filter to effectively operate in predictive rather than operate in predictive rather than reactive mode. Defaults to 0.
reactive mode.
@end table @end table
@subsection Examples @subsection Examples
@itemize @itemize
@item @item
Make music with both quiet and loud passages suitable for listening Make music with both quiet and loud passages suitable for listening in a noisy
in a noisy environment: environment:
@example @example
compand=.3 .3:1 1:-90/-60 -60/-40 -40/-30 -20/-20:6:0:-90:0.2 compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2
@end example @end example
@item @item
Noise-gate for when the noise is at a lower level than the signal: Noise gate for when the noise is at a lower level than the signal:
@example @example
compand=.1 .1:.2 .2:-900/-900 -50.1/-900 -50/-50:.01:0:-90:.1 compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1
@end example @end example
@item @item
Here is another noise-gate, this time for when the noise is at a higher level Here is another noise gate, this time for when the noise is at a higher level
than the signal (making it, in some ways, similar to squelch): than the signal (making it, in some ways, similar to squelch):
@example @example
compand=.1 .1:.1 .1:-45.1/-45.1 -45/-900 0/-900:.01:45:-90:.1 compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1
@end example @end example
@end itemize @end itemize

View File

@ -88,6 +88,7 @@ OBJS-$(CONFIG_BIQUAD_FILTER) += af_biquads.o
OBJS-$(CONFIG_CHANNELMAP_FILTER) += af_channelmap.o OBJS-$(CONFIG_CHANNELMAP_FILTER) += af_channelmap.o
OBJS-$(CONFIG_CHANNELSPLIT_FILTER) += af_channelsplit.o OBJS-$(CONFIG_CHANNELSPLIT_FILTER) += af_channelsplit.o
OBJS-$(CONFIG_COMPAND_FILTER) += af_compand.o OBJS-$(CONFIG_COMPAND_FILTER) += af_compand.o
OBJS-$(CONFIG_COMPAND_FORK_FILTER) += af_compand_fork.o
OBJS-$(CONFIG_EARWAX_FILTER) += af_earwax.o OBJS-$(CONFIG_EARWAX_FILTER) += af_earwax.o
OBJS-$(CONFIG_EBUR128_FILTER) += f_ebur128.o OBJS-$(CONFIG_EBUR128_FILTER) += f_ebur128.o
OBJS-$(CONFIG_EQUALIZER_FILTER) += af_biquads.o OBJS-$(CONFIG_EQUALIZER_FILTER) += af_biquads.o

View File

@ -0,0 +1,587 @@
/*
* Copyright (c) 1999 Chris Bagwell
* Copyright (c) 1999 Nick Bailey
* Copyright (c) 2007 Rob Sykes <robs@users.sourceforge.net>
* Copyright (c) 2013 Paul B Mahol
* Copyright (c) 2014 Andrew Kelley
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio compand filter
*/
#include <string.h>
#include "libavutil/channel_layout.h"
#include "libavutil/common.h"
#include "libavutil/mathematics.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
typedef struct ChanParam {
float attack;
float decay;
float volume;
} ChanParam;
typedef struct CompandSegment {
float x, y;
float a, b;
} CompandSegment;
typedef struct CompandContext {
const AVClass *class;
int nb_channels;
int nb_segments;
char *attacks, *decays, *points;
CompandSegment *segments;
ChanParam *channels;
float in_min_lin;
float out_min_lin;
double curve_dB;
double gain_dB;
double initial_volume;
double delay;
AVFrame *delay_frame;
int delay_samples;
int delay_count;
int delay_index;
int64_t pts;
int (*compand)(AVFilterContext *ctx, AVFrame *frame);
} CompandContext;
#define OFFSET(x) offsetof(CompandContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM
static const AVOption compand_options[] = {
{ "attacks", "set time over which increase of volume is determined", OFFSET(attacks), AV_OPT_TYPE_STRING, { .str = "0.3" }, 0, 0, A },
{ "decays", "set time over which decrease of volume is determined", OFFSET(decays), AV_OPT_TYPE_STRING, { .str = "0.8" }, 0, 0, A },
{ "points", "set points of transfer function", OFFSET(points), AV_OPT_TYPE_STRING, { .str = "-70/-70|-60/-20" }, 0, 0, A },
{ "soft-knee", "set soft-knee", OFFSET(curve_dB), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.01, 900, A },
{ "gain", "set output gain", OFFSET(gain_dB), AV_OPT_TYPE_DOUBLE, { .dbl = 0 }, -900, 900, A },
{ "volume", "set initial volume", OFFSET(initial_volume), AV_OPT_TYPE_DOUBLE, { .dbl = 0 }, -900, 0, A },
{ "delay", "set delay for samples before sending them to volume adjuster", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0 }, 0, 20, A },
{ NULL }
};
static const AVClass compand_class = {
.class_name = "compand filter",
.item_name = av_default_item_name,
.option = compand_options,
.version = LIBAVUTIL_VERSION_INT,
};
static av_cold int init(AVFilterContext *ctx)
{
CompandContext *s = ctx->priv;
s->pts = AV_NOPTS_VALUE;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
CompandContext *s = ctx->priv;
av_freep(&s->channels);
av_freep(&s->segments);
av_frame_free(&s->delay_frame);
}
static int query_formats(AVFilterContext *ctx)
{
AVFilterChannelLayouts *layouts;
AVFilterFormats *formats;
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_NONE
};
layouts = ff_all_channel_layouts();
if (!layouts)
return AVERROR(ENOMEM);
ff_set_common_channel_layouts(ctx, layouts);
formats = ff_make_format_list(sample_fmts);
if (!formats)
return AVERROR(ENOMEM);
ff_set_common_formats(ctx, formats);
formats = ff_all_samplerates();
if (!formats)
return AVERROR(ENOMEM);
ff_set_common_samplerates(ctx, formats);
return 0;
}
static void count_items(char *item_str, int *nb_items)
{
char *p;
*nb_items = 1;
for (p = item_str; *p; p++) {
if (*p == '|')
(*nb_items)++;
}
}
static void update_volume(ChanParam *cp, float in)
{
float delta = in - cp->volume;
if (delta > 0.0)
cp->volume += delta * cp->attack;
else
cp->volume += delta * cp->decay;
}
static float get_volume(CompandContext *s, float in_lin)
{
CompandSegment *cs;
float in_log, out_log;
int i;
if (in_lin < s->in_min_lin)
return s->out_min_lin;
in_log = logf(in_lin);
for (i = 1; i < s->nb_segments; i++)
if (in_log <= s->segments[i].x)
break;
cs = &s->segments[i - 1];
in_log -= cs->x;
out_log = cs->y + in_log * (cs->a * in_log + cs->b);
return expf(out_log);
}
static int compand_nodelay(AVFilterContext *ctx, AVFrame *frame)
{
CompandContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
const int channels = s->nb_channels;
const int nb_samples = frame->nb_samples;
AVFrame *out_frame;
int chan, i;
int err;
if (av_frame_is_writable(frame)) {
out_frame = frame;
} else {
out_frame = ff_get_audio_buffer(inlink, nb_samples);
if (!out_frame) {
av_frame_free(&frame);
return AVERROR(ENOMEM);
}
err = av_frame_copy_props(out_frame, frame);
if (err < 0) {
av_frame_free(&out_frame);
av_frame_free(&frame);
return err;
}
}
for (chan = 0; chan < channels; chan++) {
const float *src = (float *)frame->extended_data[chan];
float *dst = (float *)out_frame->extended_data[chan];
ChanParam *cp = &s->channels[chan];
for (i = 0; i < nb_samples; i++) {
update_volume(cp, fabs(src[i]));
dst[i] = av_clipf(src[i] * get_volume(s, cp->volume), -1.0f, 1.0f);
}
}
if (frame != out_frame)
av_frame_free(&frame);
return ff_filter_frame(ctx->outputs[0], out_frame);
}
#define MOD(a, b) (((a) >= (b)) ? (a) - (b) : (a))
static int compand_delay(AVFilterContext *ctx, AVFrame *frame)
{
CompandContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
const int channels = s->nb_channels;
const int nb_samples = frame->nb_samples;
int chan, i, dindex = 0, oindex, count = 0;
AVFrame *out_frame = NULL;
int err;
if (s->pts == AV_NOPTS_VALUE) {
s->pts = (frame->pts == AV_NOPTS_VALUE) ? 0 : frame->pts;
}
for (chan = 0; chan < channels; chan++) {
AVFrame *delay_frame = s->delay_frame;
const float *src = (float *)frame->extended_data[chan];
float *dbuf = (float *)delay_frame->extended_data[chan];
ChanParam *cp = &s->channels[chan];
float *dst;
count = s->delay_count;
dindex = s->delay_index;
for (i = 0, oindex = 0; i < nb_samples; i++) {
const float in = src[i];
update_volume(cp, fabs(in));
if (count >= s->delay_samples) {
if (!out_frame) {
out_frame = ff_get_audio_buffer(inlink, nb_samples - i);
if (!out_frame) {
av_frame_free(&frame);
return AVERROR(ENOMEM);
}
err = av_frame_copy_props(out_frame, frame);
if (err < 0) {
av_frame_free(&out_frame);
av_frame_free(&frame);
return err;
}
out_frame->pts = s->pts;
s->pts += av_rescale_q(nb_samples - i,
(AVRational){ 1, inlink->sample_rate },
inlink->time_base);
}
dst = (float *)out_frame->extended_data[chan];
dst[oindex++] = av_clipf(dbuf[dindex] *
get_volume(s, cp->volume), -1.0f, 1.0f);
} else {
count++;
}
dbuf[dindex] = in;
dindex = MOD(dindex + 1, s->delay_samples);
}
}
s->delay_count = count;
s->delay_index = dindex;
av_frame_free(&frame);
return out_frame ? ff_filter_frame(ctx->outputs[0], out_frame) : 0;
}
static int compand_drain(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
CompandContext *s = ctx->priv;
const int channels = s->nb_channels;
AVFrame *frame = NULL;
int chan, i, dindex;
/* 2048 is to limit output frame size during drain */
frame = ff_get_audio_buffer(outlink, FFMIN(2048, s->delay_count));
if (!frame)
return AVERROR(ENOMEM);
frame->pts = s->pts;
s->pts += av_rescale_q(frame->nb_samples,
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
for (chan = 0; chan < channels; chan++) {
AVFrame *delay_frame = s->delay_frame;
float *dbuf = (float *)delay_frame->extended_data[chan];
float *dst = (float *)frame->extended_data[chan];
ChanParam *cp = &s->channels[chan];
dindex = s->delay_index;
for (i = 0; i < frame->nb_samples; i++) {
dst[i] = av_clipf(dbuf[dindex] * get_volume(s, cp->volume),
-1.0f, 1.0f);
dindex = MOD(dindex + 1, s->delay_samples);
}
}
s->delay_count -= frame->nb_samples;
s->delay_index = dindex;
return ff_filter_frame(outlink, frame);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
CompandContext *s = ctx->priv;
const int sample_rate = outlink->sample_rate;
double radius = s->curve_dB * M_LN10 / 20.0;
char *p, *saveptr = NULL;
const int channels =
av_get_channel_layout_nb_channels(outlink->channel_layout);
int nb_attacks, nb_decays, nb_points;
int new_nb_items, num;
int i;
int err;
count_items(s->attacks, &nb_attacks);
count_items(s->decays, &nb_decays);
count_items(s->points, &nb_points);
if (channels <= 0) {
av_log(ctx, AV_LOG_ERROR, "Invalid number of channels: %d\n", channels);
return AVERROR(EINVAL);
}
if (nb_attacks > channels || nb_decays > channels) {
av_log(ctx, AV_LOG_ERROR,
"Number of attacks/decays bigger than number of channels.\n");
return AVERROR(EINVAL);
}
uninit(ctx);
s->nb_channels = channels;
s->channels = av_mallocz_array(channels, sizeof(*s->channels));
s->nb_segments = (nb_points + 4) * 2;
s->segments = av_mallocz_array(s->nb_segments, sizeof(*s->segments));
if (!s->channels || !s->segments) {
uninit(ctx);
return AVERROR(ENOMEM);
}
p = s->attacks;
for (i = 0, new_nb_items = 0; i < nb_attacks; i++) {
char *tstr = strtok_r(p, "|", &saveptr);
p = NULL;
new_nb_items += sscanf(tstr, "%f", &s->channels[i].attack) == 1;
if (s->channels[i].attack < 0) {
uninit(ctx);
return AVERROR(EINVAL);
}
}
nb_attacks = new_nb_items;
p = s->decays;
for (i = 0, new_nb_items = 0; i < nb_decays; i++) {
char *tstr = strtok_r(p, "|", &saveptr);
p = NULL;
new_nb_items += sscanf(tstr, "%f", &s->channels[i].decay) == 1;
if (s->channels[i].decay < 0) {
uninit(ctx);
return AVERROR(EINVAL);
}
}
nb_decays = new_nb_items;
if (nb_attacks != nb_decays) {
av_log(ctx, AV_LOG_ERROR,
"Number of attacks %d differs from number of decays %d.\n",
nb_attacks, nb_decays);
uninit(ctx);
return AVERROR(EINVAL);
}
#define S(x) s->segments[2 * ((x) + 1)]
p = s->points;
for (i = 0, new_nb_items = 0; i < nb_points; i++) {
char *tstr = strtok_r(p, "|", &saveptr);
p = NULL;
if (sscanf(tstr, "%f/%f", &S(i).x, &S(i).y) != 2) {
av_log(ctx, AV_LOG_ERROR,
"Invalid and/or missing input/output value.\n");
uninit(ctx);
return AVERROR(EINVAL);
}
if (i && S(i - 1).x > S(i).x) {
av_log(ctx, AV_LOG_ERROR,
"Transfer function input values must be increasing.\n");
uninit(ctx);
return AVERROR(EINVAL);
}
S(i).y -= S(i).x;
av_log(ctx, AV_LOG_DEBUG, "%d: x=%f y=%f\n", i, S(i).x, S(i).y);
new_nb_items++;
}
num = new_nb_items;
/* Add 0,0 if necessary */
if (num == 0 || S(num - 1).x)
num++;
#undef S
#define S(x) s->segments[2 * (x)]
/* Add a tail off segment at the start */
S(0).x = S(1).x - 2 * s->curve_dB;
S(0).y = S(1).y;
num++;
/* Join adjacent colinear segments */
for (i = 2; i < num; i++) {
double g1 = (S(i - 1).y - S(i - 2).y) * (S(i - 0).x - S(i - 1).x);
double g2 = (S(i - 0).y - S(i - 1).y) * (S(i - 1).x - S(i - 2).x);
int j;
/* here we purposefully lose precision so that we can compare floats */
if (fabs(g1 - g2))
continue;
num--;
for (j = --i; j < num; j++)
S(j) = S(j + 1);
}
for (i = 0; !i || s->segments[i - 2].x; i += 2) {
s->segments[i].y += s->gain_dB;
s->segments[i].x *= M_LN10 / 20;
s->segments[i].y *= M_LN10 / 20;
}
#define L(x) s->segments[i - (x)]
for (i = 4; s->segments[i - 2].x; i += 2) {
double x, y, cx, cy, in1, in2, out1, out2, theta, len, r;
L(4).a = 0;
L(4).b = (L(2).y - L(4).y) / (L(2).x - L(4).x);
L(2).a = 0;
L(2).b = (L(0).y - L(2).y) / (L(0).x - L(2).x);
theta = atan2(L(2).y - L(4).y, L(2).x - L(4).x);
len = sqrt(pow(L(2).x - L(4).x, 2.) + pow(L(2).y - L(4).y, 2.));
r = FFMIN(radius, len);
L(3).x = L(2).x - r * cos(theta);
L(3).y = L(2).y - r * sin(theta);
theta = atan2(L(0).y - L(2).y, L(0).x - L(2).x);
len = sqrt(pow(L(0).x - L(2).x, 2.) + pow(L(0).y - L(2).y, 2.));
r = FFMIN(radius, len / 2);
x = L(2).x + r * cos(theta);
y = L(2).y + r * sin(theta);
cx = (L(3).x + L(2).x + x) / 3;
cy = (L(3).y + L(2).y + y) / 3;
L(2).x = x;
L(2).y = y;
in1 = cx - L(3).x;
out1 = cy - L(3).y;
in2 = L(2).x - L(3).x;
out2 = L(2).y - L(3).y;
L(3).a = (out2 / in2 - out1 / in1) / (in2 - in1);
L(3).b = out1 / in1 - L(3).a * in1;
}
L(3).x = 0;
L(3).y = L(2).y;
s->in_min_lin = exp(s->segments[1].x);
s->out_min_lin = exp(s->segments[1].y);
for (i = 0; i < channels; i++) {
ChanParam *cp = &s->channels[i];
if (cp->attack > 1.0 / sample_rate)
cp->attack = 1.0 - exp(-1.0 / (sample_rate * cp->attack));
else
cp->attack = 1.0;
if (cp->decay > 1.0 / sample_rate)
cp->decay = 1.0 - exp(-1.0 / (sample_rate * cp->decay));
else
cp->decay = 1.0;
cp->volume = pow(10.0, s->initial_volume / 20);
}
s->delay_samples = s->delay * sample_rate;
if (s->delay_samples <= 0) {
s->compand = compand_nodelay;
return 0;
}
s->delay_frame = av_frame_alloc();
if (!s->delay_frame) {
uninit(ctx);
return AVERROR(ENOMEM);
}
s->delay_frame->format = outlink->format;
s->delay_frame->nb_samples = s->delay_samples;
s->delay_frame->channel_layout = outlink->channel_layout;
err = av_frame_get_buffer(s->delay_frame, 32);
if (err)
return err;
s->compand = compand_delay;
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
CompandContext *s = ctx->priv;
return s->compand(ctx, frame);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
CompandContext *s = ctx->priv;
int ret;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && s->delay_count)
ret = compand_drain(outlink);
return ret;
}
static const AVFilterPad compand_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad compand_outputs[] = {
{
.name = "default",
.request_frame = request_frame,
.config_props = config_output,
.type = AVMEDIA_TYPE_AUDIO,
},
{ NULL }
};
AVFilter ff_af_compand_fork = {
.name = "compand_fork",
.description = NULL_IF_CONFIG_SMALL(
"Compress or expand audio dynamic range."),
.query_formats = query_formats,
.priv_size = sizeof(CompandContext),
.priv_class = &compand_class,
.init = init,
.uninit = uninit,
.inputs = compand_inputs,
.outputs = compand_outputs,
};

View File

@ -83,6 +83,7 @@ void avfilter_register_all(void)
REGISTER_FILTER(CHANNELMAP, channelmap, af); REGISTER_FILTER(CHANNELMAP, channelmap, af);
REGISTER_FILTER(CHANNELSPLIT, channelsplit, af); REGISTER_FILTER(CHANNELSPLIT, channelsplit, af);
REGISTER_FILTER(COMPAND, compand, af); REGISTER_FILTER(COMPAND, compand, af);
REGISTER_FILTER(COMPAND_FORK, compand_fork, af);
REGISTER_FILTER(EARWAX, earwax, af); REGISTER_FILTER(EARWAX, earwax, af);
REGISTER_FILTER(EBUR128, ebur128, af); REGISTER_FILTER(EBUR128, ebur128, af);
REGISTER_FILTER(EQUALIZER, equalizer, af); REGISTER_FILTER(EQUALIZER, equalizer, af);

View File

@ -30,8 +30,8 @@
#include "libavutil/version.h" #include "libavutil/version.h"
#define LIBAVFILTER_VERSION_MAJOR 4 #define LIBAVFILTER_VERSION_MAJOR 4
#define LIBAVFILTER_VERSION_MINOR 1 #define LIBAVFILTER_VERSION_MINOR 2
#define LIBAVFILTER_VERSION_MICRO 103 #define LIBAVFILTER_VERSION_MICRO 100
#define LIBAVFILTER_VERSION_INT AV_VERSION_INT(LIBAVFILTER_VERSION_MAJOR, \ #define LIBAVFILTER_VERSION_INT AV_VERSION_INT(LIBAVFILTER_VERSION_MAJOR, \
LIBAVFILTER_VERSION_MINOR, \ LIBAVFILTER_VERSION_MINOR, \