1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00

lavfi/dnn_backend_tf: TaskItem Based Inference

This commit uses the common TaskItem and InferenceItem typedefs
for execution in TensorFlow backend.

Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit is contained in:
Shubhanshu Saxena 2021-07-05 16:00:53 +05:30 committed by Guo Yejun
parent 79ebdbb9b9
commit 68cf14d2b1

View File

@ -35,6 +35,7 @@
#include "dnn_backend_native_layer_maximum.h" #include "dnn_backend_native_layer_maximum.h"
#include "dnn_io_proc.h" #include "dnn_io_proc.h"
#include "dnn_backend_common.h" #include "dnn_backend_common.h"
#include "queue.h"
#include <tensorflow/c/c_api.h> #include <tensorflow/c/c_api.h>
typedef struct TFOptions{ typedef struct TFOptions{
@ -52,6 +53,7 @@ typedef struct TFModel{
TF_Graph *graph; TF_Graph *graph;
TF_Session *session; TF_Session *session;
TF_Status *status; TF_Status *status;
Queue *inference_queue;
} TFModel; } TFModel;
#define OFFSET(x) offsetof(TFContext, x) #define OFFSET(x) offsetof(TFContext, x)
@ -63,15 +65,29 @@ static const AVOption dnn_tensorflow_options[] = {
AVFILTER_DEFINE_CLASS(dnn_tensorflow); AVFILTER_DEFINE_CLASS(dnn_tensorflow);
static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, static DNNReturnType execute_model_tf(Queue *inference_queue);
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc);
static void free_buffer(void *data, size_t length) static void free_buffer(void *data, size_t length)
{ {
av_freep(&data); av_freep(&data);
} }
static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue)
{
InferenceItem *inference = av_malloc(sizeof(*inference));
if (!inference) {
return DNN_ERROR;
}
task->inference_todo = 1;
task->inference_done = 0;
inference->task = task;
if (ff_queue_push_back(inference_queue, inference) < 0) {
av_freep(&inference);
return DNN_ERROR;
}
return DNN_SUCCESS;
}
static TF_Buffer *read_graph(const char *model_filename) static TF_Buffer *read_graph(const char *model_filename)
{ {
TF_Buffer *graph_buf; TF_Buffer *graph_buf;
@ -171,6 +187,7 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
TFContext *ctx = &tf_model->ctx; TFContext *ctx = &tf_model->ctx;
AVFrame *in_frame = av_frame_alloc(); AVFrame *in_frame = av_frame_alloc();
AVFrame *out_frame = NULL; AVFrame *out_frame = NULL;
TaskItem task;
if (!in_frame) { if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
@ -187,7 +204,21 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
in_frame->width = input_width; in_frame->width = input_width;
in_frame->height = input_height; in_frame->height = input_height;
ret = execute_model_tf(tf_model->model, input_name, in_frame, &output_name, 1, out_frame, 0); task.do_ioproc = 0;
task.async = 0;
task.input_name = input_name;
task.in_frame = in_frame;
task.output_names = &output_name;
task.out_frame = out_frame;
task.model = tf_model;
task.nb_output = 1;
if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
return DNN_ERROR;
}
ret = execute_model_tf(tf_model->inference_queue);
*output_width = out_frame->width; *output_width = out_frame->width;
*output_height = out_frame->height; *output_height = out_frame->height;
@ -723,6 +754,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
} }
} }
tf_model->inference_queue = ff_queue_create();
model->model = tf_model; model->model = tf_model;
model->get_input = &get_input_tf; model->get_input = &get_input_tf;
model->get_output = &get_output_tf; model->get_output = &get_output_tf;
@ -733,26 +765,33 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
return model; return model;
} }
static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, static DNNReturnType execute_model_tf(Queue *inference_queue)
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc)
{ {
TF_Output *tf_outputs; TF_Output *tf_outputs;
TFModel *tf_model = model->model; TFModel *tf_model;
TFContext *ctx = &tf_model->ctx; TFContext *ctx;
InferenceItem *inference;
TaskItem *task;
DNNData input, *outputs; DNNData input, *outputs;
TF_Tensor **output_tensors; TF_Tensor **output_tensors;
TF_Output tf_input; TF_Output tf_input;
TF_Tensor *input_tensor; TF_Tensor *input_tensor;
if (get_input_tf(tf_model, &input, input_name) != DNN_SUCCESS) inference = ff_queue_pop_front(inference_queue);
return DNN_ERROR; av_assert0(inference);
input.height = in_frame->height; task = inference->task;
input.width = in_frame->width; tf_model = task->model;
ctx = &tf_model->ctx;
tf_input.oper = TF_GraphOperationByName(tf_model->graph, input_name); if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS)
return DNN_ERROR;
input.height = task->in_frame->height;
input.width = task->in_frame->width;
tf_input.oper = TF_GraphOperationByName(tf_model->graph, task->input_name);
if (!tf_input.oper){ if (!tf_input.oper){
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
return DNN_ERROR; return DNN_ERROR;
} }
tf_input.index = 0; tf_input.index = 0;
@ -765,30 +804,30 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
switch (tf_model->model->func_type) { switch (tf_model->model->func_type) {
case DFT_PROCESS_FRAME: case DFT_PROCESS_FRAME:
if (do_ioproc) { if (task->do_ioproc) {
if (tf_model->model->frame_pre_proc != NULL) { if (tf_model->model->frame_pre_proc != NULL) {
tf_model->model->frame_pre_proc(in_frame, &input, tf_model->model->filter_ctx); tf_model->model->frame_pre_proc(task->in_frame, &input, tf_model->model->filter_ctx);
} else { } else {
ff_proc_from_frame_to_dnn(in_frame, &input, ctx); ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
} }
} }
break; break;
case DFT_ANALYTICS_DETECT: case DFT_ANALYTICS_DETECT:
ff_frame_to_dnn_detect(in_frame, &input, ctx); ff_frame_to_dnn_detect(task->in_frame, &input, ctx);
break; break;
default: default:
avpriv_report_missing_feature(ctx, "model function type %d", tf_model->model->func_type); avpriv_report_missing_feature(ctx, "model function type %d", tf_model->model->func_type);
break; break;
} }
tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs)); tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output));
if (tf_outputs == NULL) { if (tf_outputs == NULL) {
TF_DeleteTensor(input_tensor); TF_DeleteTensor(input_tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \ av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \
return DNN_ERROR; return DNN_ERROR;
} }
output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors)); output_tensors = av_mallocz_array(task->nb_output, sizeof(*output_tensors));
if (!output_tensors) { if (!output_tensors) {
TF_DeleteTensor(input_tensor); TF_DeleteTensor(input_tensor);
av_freep(&tf_outputs); av_freep(&tf_outputs);
@ -796,13 +835,13 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
return DNN_ERROR; return DNN_ERROR;
} }
for (int i = 0; i < nb_output; ++i) { for (int i = 0; i < task->nb_output; ++i) {
tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]); tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]);
if (!tf_outputs[i].oper) { if (!tf_outputs[i].oper) {
TF_DeleteTensor(input_tensor); TF_DeleteTensor(input_tensor);
av_freep(&tf_outputs); av_freep(&tf_outputs);
av_freep(&output_tensors); av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \ av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); \
return DNN_ERROR; return DNN_ERROR;
} }
tf_outputs[i].index = 0; tf_outputs[i].index = 0;
@ -810,7 +849,7 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
TF_SessionRun(tf_model->session, NULL, TF_SessionRun(tf_model->session, NULL,
&tf_input, &input_tensor, 1, &tf_input, &input_tensor, 1,
tf_outputs, output_tensors, nb_output, tf_outputs, output_tensors, task->nb_output,
NULL, 0, NULL, tf_model->status); NULL, 0, NULL, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK) { if (TF_GetCode(tf_model->status) != TF_OK) {
TF_DeleteTensor(input_tensor); TF_DeleteTensor(input_tensor);
@ -820,7 +859,7 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
return DNN_ERROR; return DNN_ERROR;
} }
outputs = av_malloc_array(nb_output, sizeof(*outputs)); outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
if (!outputs) { if (!outputs) {
TF_DeleteTensor(input_tensor); TF_DeleteTensor(input_tensor);
av_freep(&tf_outputs); av_freep(&tf_outputs);
@ -829,36 +868,36 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
return DNN_ERROR; return DNN_ERROR;
} }
for (uint32_t i = 0; i < nb_output; ++i) { for (uint32_t i = 0; i < task->nb_output; ++i) {
outputs[i].height = TF_Dim(output_tensors[i], 1); outputs[i].height = TF_Dim(output_tensors[i], 1);
outputs[i].width = TF_Dim(output_tensors[i], 2); outputs[i].width = TF_Dim(output_tensors[i], 2);
outputs[i].channels = TF_Dim(output_tensors[i], 3); outputs[i].channels = TF_Dim(output_tensors[i], 3);
outputs[i].data = TF_TensorData(output_tensors[i]); outputs[i].data = TF_TensorData(output_tensors[i]);
outputs[i].dt = TF_TensorType(output_tensors[i]); outputs[i].dt = TF_TensorType(output_tensors[i]);
} }
switch (model->func_type) { switch (tf_model->model->func_type) {
case DFT_PROCESS_FRAME: case DFT_PROCESS_FRAME:
//it only support 1 output if it's frame in & frame out //it only support 1 output if it's frame in & frame out
if (do_ioproc) { if (task->do_ioproc) {
if (tf_model->model->frame_post_proc != NULL) { if (tf_model->model->frame_post_proc != NULL) {
tf_model->model->frame_post_proc(out_frame, outputs, tf_model->model->filter_ctx); tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx);
} else { } else {
ff_proc_from_dnn_to_frame(out_frame, outputs, ctx); ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
} }
} else { } else {
out_frame->width = outputs[0].width; task->out_frame->width = outputs[0].width;
out_frame->height = outputs[0].height; task->out_frame->height = outputs[0].height;
} }
break; break;
case DFT_ANALYTICS_DETECT: case DFT_ANALYTICS_DETECT:
if (!model->detect_post_proc) { if (!tf_model->model->detect_post_proc) {
av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n"); av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n");
return DNN_ERROR; return DNN_ERROR;
} }
model->detect_post_proc(out_frame, outputs, nb_output, model->filter_ctx); tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx);
break; break;
default: default:
for (uint32_t i = 0; i < nb_output; ++i) { for (uint32_t i = 0; i < task->nb_output; ++i) {
if (output_tensors[i]) { if (output_tensors[i]) {
TF_DeleteTensor(output_tensors[i]); TF_DeleteTensor(output_tensors[i]);
} }
@ -871,30 +910,39 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n"); av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
return DNN_ERROR; return DNN_ERROR;
} }
for (uint32_t i = 0; i < task->nb_output; ++i) {
for (uint32_t i = 0; i < nb_output; ++i) {
if (output_tensors[i]) { if (output_tensors[i]) {
TF_DeleteTensor(output_tensors[i]); TF_DeleteTensor(output_tensors[i]);
} }
} }
task->inference_done++;
TF_DeleteTensor(input_tensor); TF_DeleteTensor(input_tensor);
av_freep(&output_tensors); av_freep(&output_tensors);
av_freep(&tf_outputs); av_freep(&tf_outputs);
av_freep(&outputs); av_freep(&outputs);
return DNN_SUCCESS; return DNN_SUCCESS;
return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR;
} }
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params) DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params)
{ {
TFModel *tf_model = model->model; TFModel *tf_model = model->model;
TFContext *ctx = &tf_model->ctx; TFContext *ctx = &tf_model->ctx;
TaskItem task;
if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) { if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) {
return DNN_ERROR; return DNN_ERROR;
} }
return execute_model_tf(model, exec_params->input_name, exec_params->in_frame, if (ff_dnn_fill_task(&task, exec_params, tf_model, 0, 1) != DNN_SUCCESS) {
exec_params->output_names, exec_params->nb_output, exec_params->out_frame, 1); return DNN_ERROR;
}
if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
return DNN_ERROR;
}
return execute_model_tf(tf_model->inference_queue);
} }
void ff_dnn_free_model_tf(DNNModel **model) void ff_dnn_free_model_tf(DNNModel **model)
@ -903,6 +951,12 @@ void ff_dnn_free_model_tf(DNNModel **model)
if (*model){ if (*model){
tf_model = (*model)->model; tf_model = (*model)->model;
while (ff_queue_size(tf_model->inference_queue) != 0) {
InferenceItem *item = ff_queue_pop_front(tf_model->inference_queue);
av_freep(&item);
}
ff_queue_destroy(tf_model->inference_queue);
if (tf_model->graph){ if (tf_model->graph){
TF_DeleteGraph(tf_model->graph); TF_DeleteGraph(tf_model->graph);
} }