mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
lavfi/dnn_backend_tf: TaskItem Based Inference
This commit uses the common TaskItem and InferenceItem typedefs for execution in TensorFlow backend. Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit is contained in:
parent
79ebdbb9b9
commit
68cf14d2b1
@ -35,6 +35,7 @@
|
|||||||
#include "dnn_backend_native_layer_maximum.h"
|
#include "dnn_backend_native_layer_maximum.h"
|
||||||
#include "dnn_io_proc.h"
|
#include "dnn_io_proc.h"
|
||||||
#include "dnn_backend_common.h"
|
#include "dnn_backend_common.h"
|
||||||
|
#include "queue.h"
|
||||||
#include <tensorflow/c/c_api.h>
|
#include <tensorflow/c/c_api.h>
|
||||||
|
|
||||||
typedef struct TFOptions{
|
typedef struct TFOptions{
|
||||||
@ -52,6 +53,7 @@ typedef struct TFModel{
|
|||||||
TF_Graph *graph;
|
TF_Graph *graph;
|
||||||
TF_Session *session;
|
TF_Session *session;
|
||||||
TF_Status *status;
|
TF_Status *status;
|
||||||
|
Queue *inference_queue;
|
||||||
} TFModel;
|
} TFModel;
|
||||||
|
|
||||||
#define OFFSET(x) offsetof(TFContext, x)
|
#define OFFSET(x) offsetof(TFContext, x)
|
||||||
@ -63,15 +65,29 @@ static const AVOption dnn_tensorflow_options[] = {
|
|||||||
|
|
||||||
AVFILTER_DEFINE_CLASS(dnn_tensorflow);
|
AVFILTER_DEFINE_CLASS(dnn_tensorflow);
|
||||||
|
|
||||||
static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame,
|
static DNNReturnType execute_model_tf(Queue *inference_queue);
|
||||||
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
|
|
||||||
int do_ioproc);
|
|
||||||
|
|
||||||
static void free_buffer(void *data, size_t length)
|
static void free_buffer(void *data, size_t length)
|
||||||
{
|
{
|
||||||
av_freep(&data);
|
av_freep(&data);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue)
|
||||||
|
{
|
||||||
|
InferenceItem *inference = av_malloc(sizeof(*inference));
|
||||||
|
if (!inference) {
|
||||||
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
task->inference_todo = 1;
|
||||||
|
task->inference_done = 0;
|
||||||
|
inference->task = task;
|
||||||
|
if (ff_queue_push_back(inference_queue, inference) < 0) {
|
||||||
|
av_freep(&inference);
|
||||||
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
return DNN_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
static TF_Buffer *read_graph(const char *model_filename)
|
static TF_Buffer *read_graph(const char *model_filename)
|
||||||
{
|
{
|
||||||
TF_Buffer *graph_buf;
|
TF_Buffer *graph_buf;
|
||||||
@ -171,6 +187,7 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
|
|||||||
TFContext *ctx = &tf_model->ctx;
|
TFContext *ctx = &tf_model->ctx;
|
||||||
AVFrame *in_frame = av_frame_alloc();
|
AVFrame *in_frame = av_frame_alloc();
|
||||||
AVFrame *out_frame = NULL;
|
AVFrame *out_frame = NULL;
|
||||||
|
TaskItem task;
|
||||||
|
|
||||||
if (!in_frame) {
|
if (!in_frame) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
|
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
|
||||||
@ -187,7 +204,21 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
|
|||||||
in_frame->width = input_width;
|
in_frame->width = input_width;
|
||||||
in_frame->height = input_height;
|
in_frame->height = input_height;
|
||||||
|
|
||||||
ret = execute_model_tf(tf_model->model, input_name, in_frame, &output_name, 1, out_frame, 0);
|
task.do_ioproc = 0;
|
||||||
|
task.async = 0;
|
||||||
|
task.input_name = input_name;
|
||||||
|
task.in_frame = in_frame;
|
||||||
|
task.output_names = &output_name;
|
||||||
|
task.out_frame = out_frame;
|
||||||
|
task.model = tf_model;
|
||||||
|
task.nb_output = 1;
|
||||||
|
|
||||||
|
if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) {
|
||||||
|
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
|
||||||
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
|
||||||
|
ret = execute_model_tf(tf_model->inference_queue);
|
||||||
*output_width = out_frame->width;
|
*output_width = out_frame->width;
|
||||||
*output_height = out_frame->height;
|
*output_height = out_frame->height;
|
||||||
|
|
||||||
@ -723,6 +754,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
tf_model->inference_queue = ff_queue_create();
|
||||||
model->model = tf_model;
|
model->model = tf_model;
|
||||||
model->get_input = &get_input_tf;
|
model->get_input = &get_input_tf;
|
||||||
model->get_output = &get_output_tf;
|
model->get_output = &get_output_tf;
|
||||||
@ -733,26 +765,33 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
|
|||||||
return model;
|
return model;
|
||||||
}
|
}
|
||||||
|
|
||||||
static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame,
|
static DNNReturnType execute_model_tf(Queue *inference_queue)
|
||||||
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
|
|
||||||
int do_ioproc)
|
|
||||||
{
|
{
|
||||||
TF_Output *tf_outputs;
|
TF_Output *tf_outputs;
|
||||||
TFModel *tf_model = model->model;
|
TFModel *tf_model;
|
||||||
TFContext *ctx = &tf_model->ctx;
|
TFContext *ctx;
|
||||||
|
InferenceItem *inference;
|
||||||
|
TaskItem *task;
|
||||||
DNNData input, *outputs;
|
DNNData input, *outputs;
|
||||||
TF_Tensor **output_tensors;
|
TF_Tensor **output_tensors;
|
||||||
TF_Output tf_input;
|
TF_Output tf_input;
|
||||||
TF_Tensor *input_tensor;
|
TF_Tensor *input_tensor;
|
||||||
|
|
||||||
if (get_input_tf(tf_model, &input, input_name) != DNN_SUCCESS)
|
inference = ff_queue_pop_front(inference_queue);
|
||||||
return DNN_ERROR;
|
av_assert0(inference);
|
||||||
input.height = in_frame->height;
|
task = inference->task;
|
||||||
input.width = in_frame->width;
|
tf_model = task->model;
|
||||||
|
ctx = &tf_model->ctx;
|
||||||
|
|
||||||
tf_input.oper = TF_GraphOperationByName(tf_model->graph, input_name);
|
if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS)
|
||||||
|
return DNN_ERROR;
|
||||||
|
|
||||||
|
input.height = task->in_frame->height;
|
||||||
|
input.width = task->in_frame->width;
|
||||||
|
|
||||||
|
tf_input.oper = TF_GraphOperationByName(tf_model->graph, task->input_name);
|
||||||
if (!tf_input.oper){
|
if (!tf_input.oper){
|
||||||
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
|
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
|
||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
tf_input.index = 0;
|
tf_input.index = 0;
|
||||||
@ -765,30 +804,30 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
|
|||||||
|
|
||||||
switch (tf_model->model->func_type) {
|
switch (tf_model->model->func_type) {
|
||||||
case DFT_PROCESS_FRAME:
|
case DFT_PROCESS_FRAME:
|
||||||
if (do_ioproc) {
|
if (task->do_ioproc) {
|
||||||
if (tf_model->model->frame_pre_proc != NULL) {
|
if (tf_model->model->frame_pre_proc != NULL) {
|
||||||
tf_model->model->frame_pre_proc(in_frame, &input, tf_model->model->filter_ctx);
|
tf_model->model->frame_pre_proc(task->in_frame, &input, tf_model->model->filter_ctx);
|
||||||
} else {
|
} else {
|
||||||
ff_proc_from_frame_to_dnn(in_frame, &input, ctx);
|
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case DFT_ANALYTICS_DETECT:
|
case DFT_ANALYTICS_DETECT:
|
||||||
ff_frame_to_dnn_detect(in_frame, &input, ctx);
|
ff_frame_to_dnn_detect(task->in_frame, &input, ctx);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
avpriv_report_missing_feature(ctx, "model function type %d", tf_model->model->func_type);
|
avpriv_report_missing_feature(ctx, "model function type %d", tf_model->model->func_type);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs));
|
tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output));
|
||||||
if (tf_outputs == NULL) {
|
if (tf_outputs == NULL) {
|
||||||
TF_DeleteTensor(input_tensor);
|
TF_DeleteTensor(input_tensor);
|
||||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \
|
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \
|
||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors));
|
output_tensors = av_mallocz_array(task->nb_output, sizeof(*output_tensors));
|
||||||
if (!output_tensors) {
|
if (!output_tensors) {
|
||||||
TF_DeleteTensor(input_tensor);
|
TF_DeleteTensor(input_tensor);
|
||||||
av_freep(&tf_outputs);
|
av_freep(&tf_outputs);
|
||||||
@ -796,13 +835,13 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
|
|||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < nb_output; ++i) {
|
for (int i = 0; i < task->nb_output; ++i) {
|
||||||
tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]);
|
tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]);
|
||||||
if (!tf_outputs[i].oper) {
|
if (!tf_outputs[i].oper) {
|
||||||
TF_DeleteTensor(input_tensor);
|
TF_DeleteTensor(input_tensor);
|
||||||
av_freep(&tf_outputs);
|
av_freep(&tf_outputs);
|
||||||
av_freep(&output_tensors);
|
av_freep(&output_tensors);
|
||||||
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \
|
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); \
|
||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
tf_outputs[i].index = 0;
|
tf_outputs[i].index = 0;
|
||||||
@ -810,7 +849,7 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
|
|||||||
|
|
||||||
TF_SessionRun(tf_model->session, NULL,
|
TF_SessionRun(tf_model->session, NULL,
|
||||||
&tf_input, &input_tensor, 1,
|
&tf_input, &input_tensor, 1,
|
||||||
tf_outputs, output_tensors, nb_output,
|
tf_outputs, output_tensors, task->nb_output,
|
||||||
NULL, 0, NULL, tf_model->status);
|
NULL, 0, NULL, tf_model->status);
|
||||||
if (TF_GetCode(tf_model->status) != TF_OK) {
|
if (TF_GetCode(tf_model->status) != TF_OK) {
|
||||||
TF_DeleteTensor(input_tensor);
|
TF_DeleteTensor(input_tensor);
|
||||||
@ -820,7 +859,7 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
|
|||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
outputs = av_malloc_array(nb_output, sizeof(*outputs));
|
outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
|
||||||
if (!outputs) {
|
if (!outputs) {
|
||||||
TF_DeleteTensor(input_tensor);
|
TF_DeleteTensor(input_tensor);
|
||||||
av_freep(&tf_outputs);
|
av_freep(&tf_outputs);
|
||||||
@ -829,36 +868,36 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
|
|||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (uint32_t i = 0; i < nb_output; ++i) {
|
for (uint32_t i = 0; i < task->nb_output; ++i) {
|
||||||
outputs[i].height = TF_Dim(output_tensors[i], 1);
|
outputs[i].height = TF_Dim(output_tensors[i], 1);
|
||||||
outputs[i].width = TF_Dim(output_tensors[i], 2);
|
outputs[i].width = TF_Dim(output_tensors[i], 2);
|
||||||
outputs[i].channels = TF_Dim(output_tensors[i], 3);
|
outputs[i].channels = TF_Dim(output_tensors[i], 3);
|
||||||
outputs[i].data = TF_TensorData(output_tensors[i]);
|
outputs[i].data = TF_TensorData(output_tensors[i]);
|
||||||
outputs[i].dt = TF_TensorType(output_tensors[i]);
|
outputs[i].dt = TF_TensorType(output_tensors[i]);
|
||||||
}
|
}
|
||||||
switch (model->func_type) {
|
switch (tf_model->model->func_type) {
|
||||||
case DFT_PROCESS_FRAME:
|
case DFT_PROCESS_FRAME:
|
||||||
//it only support 1 output if it's frame in & frame out
|
//it only support 1 output if it's frame in & frame out
|
||||||
if (do_ioproc) {
|
if (task->do_ioproc) {
|
||||||
if (tf_model->model->frame_post_proc != NULL) {
|
if (tf_model->model->frame_post_proc != NULL) {
|
||||||
tf_model->model->frame_post_proc(out_frame, outputs, tf_model->model->filter_ctx);
|
tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx);
|
||||||
} else {
|
} else {
|
||||||
ff_proc_from_dnn_to_frame(out_frame, outputs, ctx);
|
ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
out_frame->width = outputs[0].width;
|
task->out_frame->width = outputs[0].width;
|
||||||
out_frame->height = outputs[0].height;
|
task->out_frame->height = outputs[0].height;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case DFT_ANALYTICS_DETECT:
|
case DFT_ANALYTICS_DETECT:
|
||||||
if (!model->detect_post_proc) {
|
if (!tf_model->model->detect_post_proc) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n");
|
av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n");
|
||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
model->detect_post_proc(out_frame, outputs, nb_output, model->filter_ctx);
|
tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
for (uint32_t i = 0; i < nb_output; ++i) {
|
for (uint32_t i = 0; i < task->nb_output; ++i) {
|
||||||
if (output_tensors[i]) {
|
if (output_tensors[i]) {
|
||||||
TF_DeleteTensor(output_tensors[i]);
|
TF_DeleteTensor(output_tensors[i]);
|
||||||
}
|
}
|
||||||
@ -871,30 +910,39 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n
|
|||||||
av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
|
av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
|
||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
for (uint32_t i = 0; i < task->nb_output; ++i) {
|
||||||
for (uint32_t i = 0; i < nb_output; ++i) {
|
|
||||||
if (output_tensors[i]) {
|
if (output_tensors[i]) {
|
||||||
TF_DeleteTensor(output_tensors[i]);
|
TF_DeleteTensor(output_tensors[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
task->inference_done++;
|
||||||
TF_DeleteTensor(input_tensor);
|
TF_DeleteTensor(input_tensor);
|
||||||
av_freep(&output_tensors);
|
av_freep(&output_tensors);
|
||||||
av_freep(&tf_outputs);
|
av_freep(&tf_outputs);
|
||||||
av_freep(&outputs);
|
av_freep(&outputs);
|
||||||
return DNN_SUCCESS;
|
return DNN_SUCCESS;
|
||||||
|
return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params)
|
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params)
|
||||||
{
|
{
|
||||||
TFModel *tf_model = model->model;
|
TFModel *tf_model = model->model;
|
||||||
TFContext *ctx = &tf_model->ctx;
|
TFContext *ctx = &tf_model->ctx;
|
||||||
|
TaskItem task;
|
||||||
|
|
||||||
if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) {
|
if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) {
|
||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
return execute_model_tf(model, exec_params->input_name, exec_params->in_frame,
|
if (ff_dnn_fill_task(&task, exec_params, tf_model, 0, 1) != DNN_SUCCESS) {
|
||||||
exec_params->output_names, exec_params->nb_output, exec_params->out_frame, 1);
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) {
|
||||||
|
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
|
||||||
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
return execute_model_tf(tf_model->inference_queue);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ff_dnn_free_model_tf(DNNModel **model)
|
void ff_dnn_free_model_tf(DNNModel **model)
|
||||||
@ -903,6 +951,12 @@ void ff_dnn_free_model_tf(DNNModel **model)
|
|||||||
|
|
||||||
if (*model){
|
if (*model){
|
||||||
tf_model = (*model)->model;
|
tf_model = (*model)->model;
|
||||||
|
while (ff_queue_size(tf_model->inference_queue) != 0) {
|
||||||
|
InferenceItem *item = ff_queue_pop_front(tf_model->inference_queue);
|
||||||
|
av_freep(&item);
|
||||||
|
}
|
||||||
|
ff_queue_destroy(tf_model->inference_queue);
|
||||||
|
|
||||||
if (tf_model->graph){
|
if (tf_model->graph){
|
||||||
TF_DeleteGraph(tf_model->graph);
|
TF_DeleteGraph(tf_model->graph);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user