1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

dnn/native: add native support for 'add'

It can be tested with the model file generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.039 + x
z2 = x + 0.042
z3 = z1 + z2
z4 = z3 - 0.381
z5 = z4 - x
y = tf.math.maximum(z5, 0.0, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
Guo, Yejun 2020-04-10 21:35:11 +08:00
parent 36083450a4
commit 6aa7e07e7c
4 changed files with 22 additions and 9 deletions

View File

@ -107,6 +107,19 @@ int dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_ope
} }
} }
return 0; return 0;
case DMBO_ADD:
if (params->input0_broadcast || params->input1_broadcast) {
for (int i = 0; i < dims_count; ++i) {
dst[i] = params->v + src[i];
}
} else {
const DnnOperand *input1 = &operands[input_operand_indexes[1]];
const float *src1 = input1->data;
for (int i = 0; i < dims_count; ++i) {
dst[i] = src[i] + src1[i];
}
}
return 0;
default: default:
return -1; return -1;
} }

View File

@ -32,6 +32,7 @@
typedef enum { typedef enum {
DMBO_SUB = 0, DMBO_SUB = 0,
DMBO_ADD = 1,
DMBO_COUNT DMBO_COUNT
} DNNMathBinaryOperation; } DNNMathBinaryOperation;

View File

@ -71,7 +71,7 @@ class TFConverter:
self.conv2d_scope_names = set() self.conv2d_scope_names = set()
self.conv2d_scopename_inputname_dict = {} self.conv2d_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5} self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
self.mathbin2code = {'Sub':0} self.mathbin2code = {'Sub':0, 'Add':1}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
self.name_operand_dict = {} self.name_operand_dict = {}
@ -255,8 +255,7 @@ class TFConverter:
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_sub_to_file(self, node, f): def dump_mathbinary_to_file(self, node, f):
assert(node.op == 'Sub')
self.layer_number = self.layer_number + 1 self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name) self.converted_nodes.add(node.name)
i0_node = self.name_node_dict[node.input[0]] i0_node = self.name_node_dict[node.input[0]]
@ -264,15 +263,13 @@ class TFConverter:
np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f) np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
if i0_node.op == 'Const': if i0_node.op == 'Const':
scalar = i0_node.attr['value'].tensor.float_val[0] scalar = i0_node.attr['value'].tensor.float_val[0]
assert(i0_node.name.find('sub/x')) np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1
np.array([1], dtype=np.uint32).tofile(f)
np.array([scalar], dtype=np.float32).tofile(f) np.array([scalar], dtype=np.float32).tofile(f)
np.array([0], dtype=np.uint32).tofile(f) np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0
input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
np.array([input_operand_index], dtype=np.uint32).tofile(f) np.array([input_operand_index], dtype=np.uint32).tofile(f)
elif i1_node.op == 'Const': elif i1_node.op == 'Const':
scalar = i1_node.attr['value'].tensor.float_val[0] scalar = i1_node.attr['value'].tensor.float_val[0]
assert(i1_node.name.find('sub/y'))
np.array([0], dtype=np.uint32).tofile(f) np.array([0], dtype=np.uint32).tofile(f)
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
np.array([input_operand_index], dtype=np.uint32).tofile(f) np.array([input_operand_index], dtype=np.uint32).tofile(f)
@ -309,7 +306,9 @@ class TFConverter:
elif node.op == 'Maximum': elif node.op == 'Maximum':
self.dump_maximum_to_file(node, f) self.dump_maximum_to_file(node, f)
elif node.op == 'Sub': elif node.op == 'Sub':
self.dump_sub_to_file(node, f) self.dump_mathbinary_to_file(node, f)
elif node.op == 'Add':
self.dump_mathbinary_to_file(node, f)
def dump_operands_to_file(self, f): def dump_operands_to_file(self, f):

View File

@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
major = 1 major = 1
# increase minor when we don't have to re-convert the model file # increase minor when we don't have to re-convert the model file
minor = 1 minor = 2