mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
dnn/native: add native support for 'add'
It can be tested with the model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 0.039 + x z2 = x + 0.042 z3 = z1 + z2 z4 = z3 - 0.381 z5 = z4 - x y = tf.math.maximum(z5, 0.0, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
36083450a4
commit
6aa7e07e7c
@ -107,6 +107,19 @@ int dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_ope
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
|
case DMBO_ADD:
|
||||||
|
if (params->input0_broadcast || params->input1_broadcast) {
|
||||||
|
for (int i = 0; i < dims_count; ++i) {
|
||||||
|
dst[i] = params->v + src[i];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
const DnnOperand *input1 = &operands[input_operand_indexes[1]];
|
||||||
|
const float *src1 = input1->data;
|
||||||
|
for (int i = 0; i < dims_count; ++i) {
|
||||||
|
dst[i] = src[i] + src1[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
default:
|
default:
|
||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
@ -32,6 +32,7 @@
|
|||||||
|
|
||||||
typedef enum {
|
typedef enum {
|
||||||
DMBO_SUB = 0,
|
DMBO_SUB = 0,
|
||||||
|
DMBO_ADD = 1,
|
||||||
DMBO_COUNT
|
DMBO_COUNT
|
||||||
} DNNMathBinaryOperation;
|
} DNNMathBinaryOperation;
|
||||||
|
|
||||||
|
@ -71,7 +71,7 @@ class TFConverter:
|
|||||||
self.conv2d_scope_names = set()
|
self.conv2d_scope_names = set()
|
||||||
self.conv2d_scopename_inputname_dict = {}
|
self.conv2d_scopename_inputname_dict = {}
|
||||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
|
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
|
||||||
self.mathbin2code = {'Sub':0}
|
self.mathbin2code = {'Sub':0, 'Add':1}
|
||||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||||
self.name_operand_dict = {}
|
self.name_operand_dict = {}
|
||||||
|
|
||||||
@ -255,8 +255,7 @@ class TFConverter:
|
|||||||
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
def dump_sub_to_file(self, node, f):
|
def dump_mathbinary_to_file(self, node, f):
|
||||||
assert(node.op == 'Sub')
|
|
||||||
self.layer_number = self.layer_number + 1
|
self.layer_number = self.layer_number + 1
|
||||||
self.converted_nodes.add(node.name)
|
self.converted_nodes.add(node.name)
|
||||||
i0_node = self.name_node_dict[node.input[0]]
|
i0_node = self.name_node_dict[node.input[0]]
|
||||||
@ -264,15 +263,13 @@ class TFConverter:
|
|||||||
np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
|
np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
|
||||||
if i0_node.op == 'Const':
|
if i0_node.op == 'Const':
|
||||||
scalar = i0_node.attr['value'].tensor.float_val[0]
|
scalar = i0_node.attr['value'].tensor.float_val[0]
|
||||||
assert(i0_node.name.find('sub/x'))
|
np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1
|
||||||
np.array([1], dtype=np.uint32).tofile(f)
|
|
||||||
np.array([scalar], dtype=np.float32).tofile(f)
|
np.array([scalar], dtype=np.float32).tofile(f)
|
||||||
np.array([0], dtype=np.uint32).tofile(f)
|
np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0
|
||||||
input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
|
input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
|
||||||
np.array([input_operand_index], dtype=np.uint32).tofile(f)
|
np.array([input_operand_index], dtype=np.uint32).tofile(f)
|
||||||
elif i1_node.op == 'Const':
|
elif i1_node.op == 'Const':
|
||||||
scalar = i1_node.attr['value'].tensor.float_val[0]
|
scalar = i1_node.attr['value'].tensor.float_val[0]
|
||||||
assert(i1_node.name.find('sub/y'))
|
|
||||||
np.array([0], dtype=np.uint32).tofile(f)
|
np.array([0], dtype=np.uint32).tofile(f)
|
||||||
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
|
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
|
||||||
np.array([input_operand_index], dtype=np.uint32).tofile(f)
|
np.array([input_operand_index], dtype=np.uint32).tofile(f)
|
||||||
@ -309,7 +306,9 @@ class TFConverter:
|
|||||||
elif node.op == 'Maximum':
|
elif node.op == 'Maximum':
|
||||||
self.dump_maximum_to_file(node, f)
|
self.dump_maximum_to_file(node, f)
|
||||||
elif node.op == 'Sub':
|
elif node.op == 'Sub':
|
||||||
self.dump_sub_to_file(node, f)
|
self.dump_mathbinary_to_file(node, f)
|
||||||
|
elif node.op == 'Add':
|
||||||
|
self.dump_mathbinary_to_file(node, f)
|
||||||
|
|
||||||
|
|
||||||
def dump_operands_to_file(self, f):
|
def dump_operands_to_file(self, f):
|
||||||
|
@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
|
|||||||
major = 1
|
major = 1
|
||||||
|
|
||||||
# increase minor when we don't have to re-convert the model file
|
# increase minor when we don't have to re-convert the model file
|
||||||
minor = 1
|
minor = 2
|
||||||
|
Loading…
Reference in New Issue
Block a user