1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-08-10 06:10:52 +02:00

lavfi/dnn: Remove DNN native backend

According to discussion in
https://etherpad.mit.edu/p/FF_dev_meeting_20221202 and the proposal in
http://ffmpeg.org/pipermail/ffmpeg-devel/2022-December/304534.html,
the DNN native backend should be removed at first step.
All the DNN native backend related codes are deleted.

Signed-off-by: Ting Fu <ting.fu@intel.com>
This commit is contained in:
Ting Fu
2023-04-27 17:43:46 +08:00
committed by Guo Yejun
parent a9fb141719
commit 78f95f1088
37 changed files with 4 additions and 4440 deletions

View File

@@ -3,16 +3,6 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_io_proc.o
OBJS-$(CONFIG_DNN) += dnn/queue.o
OBJS-$(CONFIG_DNN) += dnn/safe_queue.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_common.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_dense.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathbinary.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathunary.o
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o

View File

@@ -1,561 +0,0 @@
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layers.h"
#include "dnn_io_proc.h"
#include "dnn_backend_common.h"
#define OFFSET(x) offsetof(NativeContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dnn_native_options[] = {
{ "conv2d_threads", "threads num for conv2d layer", OFFSET(options.conv2d_threads), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, FLAGS },
{ "async", "use DNN async inference", OFFSET(options.async), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
{ NULL },
};
static const AVClass dnn_native_class = {
.class_name = "dnn_native",
.item_name = av_default_item_name,
.option = dnn_native_options,
.version = LIBAVUTIL_VERSION_INT,
.category = AV_CLASS_CATEGORY_FILTER,
};
static int execute_model_native(Queue *lltask_queue);
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
{
NativeModel *native_model = task->model;
NativeContext *ctx = &native_model->ctx;
LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask));
if (!lltask) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n");
return AVERROR(ENOMEM);
}
task->inference_todo = 1;
task->inference_done = 0;
lltask->task = task;
if (ff_queue_push_back(lltask_queue, lltask) < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
av_freep(&lltask);
return AVERROR(ENOMEM);
}
return 0;
}
static int get_input_native(void *model, DNNData *input, const char *input_name)
{
NativeModel *native_model = model;
NativeContext *ctx = &native_model->ctx;
for (int i = 0; i < native_model->operands_num; ++i) {
DnnOperand *oprd = &native_model->operands[i];
if (strcmp(oprd->name, input_name) == 0) {
if (oprd->type != DOT_INPUT) {
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name);
return AVERROR(EINVAL);
}
input->dt = oprd->data_type;
av_assert0(oprd->dims[0] == 1);
input->height = oprd->dims[1];
input->width = oprd->dims[2];
input->channels = oprd->dims[3];
return 0;
}
}
// do not find the input operand
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
return AVERROR(EINVAL);
}
static int get_output_native(void *model, const char *input_name, int input_width, int input_height,
const char *output_name, int *output_width, int *output_height)
{
int ret = 0;
NativeModel *native_model = model;
NativeContext *ctx = &native_model->ctx;
TaskItem task;
DNNExecBaseParams exec_params = {
.input_name = input_name,
.output_names = &output_name,
.nb_output = 1,
.in_frame = NULL,
.out_frame = NULL,
};
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx);
if (ret != 0) {
goto err;
}
ret = extract_lltask_from_task(&task, native_model->lltask_queue);
if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
goto err;
}
ret = execute_model_native(native_model->lltask_queue);
*output_width = task.out_frame->width;
*output_height = task.out_frame->height;
err:
av_frame_free(&task.out_frame);
av_frame_free(&task.in_frame);
return ret;
}
// Loads model and its parameters that are stored in a binary file with following structure:
// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
// For DEPTH_TO_SPACE layer: block_size
DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
{
#define DNN_NATIVE_MAGIC "FFMPEGDNNNATIVE"
DNNModel *model = NULL;
// sizeof - 1 to skip the terminating '\0' which is not written in the file
char buf[sizeof(DNN_NATIVE_MAGIC) - 1];
int version, header_size, major_version_expected = 1;
NativeModel *native_model = NULL;
AVIOContext *model_file_context;
int file_size, dnn_size, parsed_size;
int32_t layer;
DNNLayerType layer_type;
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
return NULL;
}
file_size = avio_size(model_file_context);
model = av_mallocz(sizeof(DNNModel));
if (!model){
goto fail;
}
/**
* check file header with string and version
*/
if (avio_read(model_file_context, buf, sizeof(buf)) != sizeof(buf) ||
memcmp(buf, DNN_NATIVE_MAGIC, sizeof(buf)))
goto fail;
dnn_size = sizeof(buf);
version = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (version != major_version_expected) {
goto fail;
}
// currently no need to check minor version
version = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
header_size = dnn_size;
native_model = av_mallocz(sizeof(NativeModel));
if (!native_model){
goto fail;
}
model->model = native_model;
native_model->ctx.class = &dnn_native_class;
model->options = options;
if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0)
goto fail;
native_model->model = model;
if (native_model->ctx.options.async) {
av_log(&native_model->ctx, AV_LOG_WARNING, "Async not supported. Rolling back to sync\n");
native_model->ctx.options.async = 0;
}
#if !HAVE_PTHREAD_CANCEL
if (native_model->ctx.options.conv2d_threads > 1){
av_log(&native_model->ctx, AV_LOG_WARNING, "'conv2d_threads' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
#endif
avio_seek(model_file_context, file_size - 8, SEEK_SET);
native_model->layers_num = (int32_t)avio_rl32(model_file_context);
native_model->operands_num = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
avio_seek(model_file_context, header_size, SEEK_SET);
native_model->layers = av_mallocz(native_model->layers_num * sizeof(Layer));
if (!native_model->layers){
goto fail;
}
native_model->operands = av_mallocz(native_model->operands_num * sizeof(DnnOperand));
if (!native_model->operands){
goto fail;
}
native_model->task_queue = ff_queue_create();
if (!native_model->task_queue) {
goto fail;
}
native_model->lltask_queue = ff_queue_create();
if (!native_model->lltask_queue) {
goto fail;
}
for (layer = 0; layer < native_model->layers_num; ++layer){
layer_type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (layer_type >= DLT_COUNT) {
goto fail;
}
native_model->layers[layer].type = layer_type;
parsed_size = ff_layer_funcs[layer_type].pf_load(&native_model->layers[layer], model_file_context, file_size, native_model->operands_num);
if (!parsed_size) {
goto fail;
}
dnn_size += parsed_size;
}
for (int32_t i = 0; i < native_model->operands_num; ++i){
DnnOperand *oprd;
int32_t name_len;
int32_t operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (operand_index >= native_model->operands_num) {
goto fail;
}
oprd = &native_model->operands[operand_index];
name_len = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name));
dnn_size += name_len;
oprd->type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
oprd->data_type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
for (int32_t dim = 0; dim < 4; ++dim) {
oprd->dims[dim] = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
}
if (oprd->type == DOT_INPUT && oprd->dims[0] != 1)
goto fail;
oprd->isNHWC = 1;
}
avio_closep(&model_file_context);
if (dnn_size != file_size){
ff_dnn_free_model_native(&model);
return NULL;
}
model->get_input = &get_input_native;
model->get_output = &get_output_native;
model->filter_ctx = filter_ctx;
model->func_type = func_type;
return model;
fail:
ff_dnn_free_model_native(&model);
avio_closep(&model_file_context);
return NULL;
}
static int execute_model_native(Queue *lltask_queue)
{
NativeModel *native_model = NULL;
NativeContext *ctx = NULL;
int32_t layer;
DNNData input, output;
DnnOperand *oprd = NULL;
LastLevelTaskItem *lltask = NULL;
TaskItem *task = NULL;
int ret = 0;
lltask = ff_queue_pop_front(lltask_queue);
if (!lltask) {
av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
ret = AVERROR(EINVAL);
goto err;
}
task = lltask->task;
native_model = task->model;
ctx = &native_model->ctx;
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
ret = AVERROR(EINVAL);
goto err;
}
for (int i = 0; i < native_model->operands_num; ++i) {
oprd = &native_model->operands[i];
if (strcmp(oprd->name, task->input_name) == 0) {
if (oprd->type != DOT_INPUT) {
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", task->input_name);
ret = AVERROR(EINVAL);
goto err;
}
break;
}
oprd = NULL;
}
if (!oprd) {
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
ret = AVERROR(EINVAL);
goto err;
}
oprd->dims[1] = task->in_frame->height;
oprd->dims[2] = task->in_frame->width;
av_freep(&oprd->data);
oprd->length = ff_calculate_operand_data_length(oprd);
if (oprd->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n");
ret = AVERROR(EINVAL);
goto err;
}
oprd->data = av_malloc(oprd->length);
if (!oprd->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n");
ret = AVERROR(ENOMEM);
goto err;
}
input.height = oprd->dims[1];
input.width = oprd->dims[2];
input.channels = oprd->dims[3];
input.data = oprd->data;
input.dt = oprd->data_type;
if (task->do_ioproc) {
if (native_model->model->frame_pre_proc != NULL) {
native_model->model->frame_pre_proc(task->in_frame, &input, native_model->model->filter_ctx);
} else {
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
}
}
if (task->nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
avpriv_report_missing_feature(ctx, "multiple outputs");
ret = AVERROR(ENOSYS);
goto err;
}
for (layer = 0; layer < native_model->layers_num; ++layer){
DNNLayerType layer_type = native_model->layers[layer].type;
ret = ff_layer_funcs[layer_type].pf_exec(native_model->operands,
native_model->layers[layer].input_operand_indexes,
native_model->layers[layer].output_operand_index,
native_model->layers[layer].params,
&native_model->ctx);
if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n");
goto err;
}
}
for (uint32_t i = 0; i < task->nb_output; ++i) {
DnnOperand *oprd = NULL;
const char *output_name = task->output_names[i];
for (int j = 0; j < native_model->operands_num; ++j) {
if (strcmp(native_model->operands[j].name, output_name) == 0) {
oprd = &native_model->operands[j];
break;
}
}
if (oprd == NULL) {
av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n");
ret = AVERROR(EINVAL);
goto err;
}
output.data = oprd->data;
output.height = oprd->dims[1];
output.width = oprd->dims[2];
output.channels = oprd->dims[3];
output.dt = oprd->data_type;
if (task->do_ioproc) {
if (native_model->model->frame_post_proc != NULL) {
native_model->model->frame_post_proc(task->out_frame, &output, native_model->model->filter_ctx);
} else {
ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx);
}
} else {
task->out_frame->width = output.width;
task->out_frame->height = output.height;
}
}
task->inference_done++;
err:
av_freep(&lltask);
return ret;
}
int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params)
{
NativeModel *native_model = model->model;
NativeContext *ctx = &native_model->ctx;
TaskItem *task;
int ret = 0;
ret = ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params);
if (ret != 0) {
return ret;
}
task = av_malloc(sizeof(*task));
if (!task) {
av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
return AVERROR(ENOMEM);
}
ret = ff_dnn_fill_task(task, exec_params, native_model, ctx->options.async, 1);
if (ret != 0) {
av_freep(&task);
return ret;
}
if (ff_queue_push_back(native_model->task_queue, task) < 0) {
av_freep(&task);
av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
return AVERROR(ENOMEM);
}
ret = extract_lltask_from_task(task, native_model->lltask_queue);
if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
return ret;
}
return execute_model_native(native_model->lltask_queue);
}
int ff_dnn_flush_native(const DNNModel *model)
{
NativeModel *native_model = model->model;
if (ff_queue_size(native_model->lltask_queue) == 0) {
// no pending task need to flush
return 0;
}
// for now, use sync node with flush operation
// Switch to async when it is supported
return execute_model_native(native_model->lltask_queue);
}
DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out)
{
NativeModel *native_model = model->model;
return ff_dnn_get_result_common(native_model->task_queue, in, out);
}
int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd)
{
int32_t result = 1;
for (int i = 0; i < 4; ++i)
result *= oprd->dims[i];
return result;
}
int32_t ff_calculate_operand_data_length(const DnnOperand* oprd)
{
// currently, we just support DNN_FLOAT
uint64_t len = sizeof(float);
for (int i = 0; i < 4; i++) {
len *= oprd->dims[i];
if (len > INT32_MAX)
return 0;
}
return len;
}
void ff_dnn_free_model_native(DNNModel **model)
{
NativeModel *native_model;
ConvolutionalParams *conv_params;
int32_t layer;
if (*model)
{
if ((*model)->model) {
native_model = (*model)->model;
if (native_model->layers) {
for (layer = 0; layer < native_model->layers_num; ++layer){
if (native_model->layers[layer].type == DLT_CONV2D){
conv_params = (ConvolutionalParams *)native_model->layers[layer].params;
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
}
av_freep(&native_model->layers[layer].params);
}
av_freep(&native_model->layers);
}
if (native_model->operands) {
for (uint32_t operand = 0; operand < native_model->operands_num; ++operand)
av_freep(&native_model->operands[operand].data);
av_freep(&native_model->operands);
}
while (ff_queue_size(native_model->lltask_queue) != 0) {
LastLevelTaskItem *item = ff_queue_pop_front(native_model->lltask_queue);
av_freep(&item);
}
ff_queue_destroy(native_model->lltask_queue);
while (ff_queue_size(native_model->task_queue) != 0) {
TaskItem *item = ff_queue_pop_front(native_model->task_queue);
av_frame_free(&item->in_frame);
av_frame_free(&item->out_frame);
av_freep(&item);
}
ff_queue_destroy(native_model->task_queue);
av_freep(&native_model);
}
av_freep(model);
}
}

View File

@@ -1,149 +0,0 @@
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference functions interface for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_H
#include "../dnn_interface.h"
#include "libavformat/avio.h"
#include "libavutil/opt.h"
#include "queue.h"
/**
* the enum value of DNNLayerType should not be changed,
* the same values are used in convert_from_tensorflow.py
* and, it is used to index the layer execution/load function pointer.
*/
typedef enum {
DLT_INPUT = 0,
DLT_CONV2D = 1,
DLT_DEPTH_TO_SPACE = 2,
DLT_MIRROR_PAD = 3,
DLT_MAXIMUM = 4,
DLT_MATH_BINARY = 5,
DLT_MATH_UNARY = 6,
DLT_AVG_POOL = 7,
DLT_DENSE = 8,
DLT_COUNT
} DNNLayerType;
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType;
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam;
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
typedef struct Layer{
DNNLayerType type;
/**
* a layer can have multiple inputs and one output.
* 4 is just a big enough number for input operands (increase it if necessary),
* do not use 'int32_t *input_operand_indexes', so we don't worry about mem leaks.
*/
int32_t input_operand_indexes[4];
int32_t output_operand_index;
void *params;
} Layer;
typedef struct DnnOperand{
/**
* there are two memory layouts, NHWC or NCHW, so we use dims,
* dims[0] is Number.
*/
int32_t dims[4];
/**
* input/output/intermediate operand of the network
*/
DNNOperandType type;
/**
* support different kinds of data type such as float, half float, int8 etc,
* first support float now.
*/
DNNDataType data_type;
/**
* NHWC if 1, otherwise NCHW.
* let's first support NHWC only, this flag is for extensive usage.
*/
int8_t isNHWC;
/**
* to avoid possible memory leak, do not use char *name
*/
char name[128];
/**
* data pointer with data length in bytes.
* usedNumbersLeft is only valid for intermediate operand,
* it means how many layers still depend on this operand,
* todo: the memory can be reused when usedNumbersLeft is zero.
*/
void *data;
int32_t length;
int32_t usedNumbersLeft;
}DnnOperand;
typedef struct InputParams{
int height, width, channels;
} InputParams;
typedef struct NativeOptions{
uint8_t async;
uint32_t conv2d_threads;
} NativeOptions;
typedef struct NativeContext {
const AVClass *class;
NativeOptions options;
} NativeContext;
// Represents simple feed-forward convolutional network.
typedef struct NativeModel{
NativeContext ctx;
DNNModel *model;
Layer *layers;
int32_t layers_num;
DnnOperand *operands;
int32_t operands_num;
Queue *task_queue;
Queue *lltask_queue;
} NativeModel;
DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params);
DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out);
int ff_dnn_flush_native(const DNNModel *model);
void ff_dnn_free_model_native(DNNModel **model);
// NOTE: User must check for error (return value <= 0) to handle
// case like integer overflow.
int32_t ff_calculate_operand_data_length(const DnnOperand *oprd);
int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd);
#endif

View File

@@ -1,147 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_avgpool.h"
int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
AvgPoolParams *avgpool_params;
int dnn_size = 0;
avgpool_params = av_malloc(sizeof(*avgpool_params));
if(!avgpool_params)
return 0;
avgpool_params->strides = (int32_t)avio_rl32(model_file_context);
avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context);
avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context);
dnn_size += 12;
if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){
av_freep(&avgpool_params);
return 0;
}
layer->params = avgpool_params;
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
float *output;
int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area;
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
const AvgPoolParams *avgpool_params = parameters;
int kernel_strides = avgpool_params->strides;
int src_linesize = width * channel;
DnnOperand *output_operand = &operands[output_operand_index];
/**
* When padding_method = SAME, the tensorflow will only padding the hald number of 0 pixels
* except the remainders.
* Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2
* and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image,
* and 5 - 2 - 1 = 2 lines after the last line of input image.
* and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image,
* and 7 - 2 - 2 = 3 lines after the last line of input image.
*/
if (avgpool_params->padding_method == SAME) {
height_end = height;
width_end = width;
height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1);
width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1);
height_radius = height_radius < 0 ? 0 : height_radius >> 1;
width_radius = width_radius < 0 ? 0 : width_radius >> 1;
output_height = ceil(height / (kernel_strides * 1.0));
output_width = ceil(width / (kernel_strides * 1.0));
} else {
av_assert0(avgpool_params->padding_method == VALID);
height_end = height - avgpool_params->kernel_size + 1;
width_end = width - avgpool_params->kernel_size + 1;
height_radius = 0;
width_radius = 0;
output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0));
output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0));
}
output_operand->dims[0] = number;
output_operand->dims[1] = output_height;
output_operand->dims[2] = output_width;
// not support pooling in channel dimension now
output_operand->dims[3] = channel;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = ff_calculate_operand_data_length(output_operand);
if (output_operand->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
output = output_operand->data;
for (int y = 0; y < height_end; y += kernel_strides) {
for (int x = 0; x < width_end; x += kernel_strides) {
for (int n_channel = 0; n_channel < channel; ++n_channel) {
output[n_channel] = 0.0;
kernel_area = 0;
for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) {
for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) {
float input_pel;
int y_pos = y + (kernel_y - height_radius);
int x_pos = x + (kernel_x - width_radius);
if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) {
input_pel = 0.0;
} else {
kernel_area++;
input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel];
}
output[n_channel] += input_pel;
}
}
output[n_channel] /= kernel_area;
}
output += channel;
}
}
return 0;
}

View File

@@ -1,69 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference functions interface for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H
#include "dnn_backend_native.h"
typedef struct AvgPoolParams{
int32_t strides, kernel_size;
DNNPaddingParam padding_method;
} AvgPoolParams;
/**
* @brief Load Average Pooling Layer.
*
* It assigns the Average Pooling layer with AvgPoolParams
* after parsing from the model file context.
*
* @param layer pointer to the DNN layer instance
* @param model_file_context pointer to model file context
* @param file_size model file size to check if data is read
* correctly from the model file
* @param operands_num operand count of the whole model to
* check if data is read correctly from the model file
* @return number of bytes read from the model file
* @retval 0 if out of memory or an error occurs
*/
int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
/**
* @brief Execute the Average Pooling Layer.
* Padding in channel dimensions is currently not supported.
*
* @param operands all operands for the model
* @param input_operand_indexes input operand indexes for this layer
* @param output_operand_index output operand index for this layer
* @param parameters average pooling parameters
* @param ctx pointer to Native model context for logging
* @retval 0 if the execution succeeds
* @retval AVERROR(ENOMEM) if memory allocation fails
* @retval AVERROR(EINVAL) for invalid arguments
*/
int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,265 +0,0 @@
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/thread.h"
#include "libavutil/cpu.h"
#include "dnn_backend_native_layer_conv2d.h"
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
//struct to pass parameters
typedef struct ThreadCommonParam{
DnnOperand *operands;
const int32_t *input_operand_indexes;
int32_t output_operand_index;
const void *parameters;
NativeContext *ctx;
float *output_data;
} ThreadCommonParam;
typedef struct ThreadParam{
ThreadCommonParam *thread_common_param;
int thread_start, thread_end;
#if HAVE_PTHREAD_CANCEL
pthread_t thread;
#endif
} ThreadParam;
int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
ConvolutionalParams *conv_params;
int kernel_size;
int dnn_size = 0;
conv_params = av_malloc(sizeof(*conv_params));
if (!conv_params)
return 0;
conv_params->dilation = (int32_t)avio_rl32(model_file_context);
conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
conv_params->activation = (int32_t)avio_rl32(model_file_context);
conv_params->input_num = (int32_t)avio_rl32(model_file_context);
conv_params->output_num = (int32_t)avio_rl32(model_file_context);
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
dnn_size += 28;
kernel_size = conv_params->input_num * conv_params->output_num *
conv_params->kernel_size * conv_params->kernel_size;
dnn_size += kernel_size * 4;
if (conv_params->has_bias)
dnn_size += conv_params->output_num * 4;
if (dnn_size > file_size || conv_params->input_num <= 0 ||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
av_freep(&conv_params);
return 0;
}
conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel));
if (!conv_params->kernel) {
av_freep(&conv_params);
return 0;
}
for (int i = 0; i < kernel_size; ++i) {
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
}
conv_params->biases = NULL;
if (conv_params->has_bias) {
conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases));
if (!conv_params->biases){
av_freep(&conv_params->kernel);
av_freep(&conv_params);
return 0;
}
for (int i = 0; i < conv_params->output_num; ++i){
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
}
}
layer->params = conv_params;
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
static void * dnn_execute_layer_conv2d_thread(void *threadarg)
{
//pass parameters
ThreadParam *thread_param = threadarg;
ThreadCommonParam *thread_common_param = thread_param->thread_common_param;
DnnOperand *operands = thread_common_param->operands;
int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
const ConvolutionalParams *conv_params = thread_common_param->parameters;
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
int filter_size = conv_params->kernel_size * filter_linesize;
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
float *output = thread_common_param->output_data;
output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size);
av_assert0(channel == conv_params->input_num);
for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
if (conv_params->has_bias)
output[n_filter] = conv_params->biases[n_filter];
else
output[n_filter] = 0.f;
for (int ch = 0; ch < conv_params->input_num; ++ch) {
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
float input_pel;
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
} else {
int y_pos = y + (kernel_y - radius) * conv_params->dilation;
int x_pos = x + (kernel_x - radius) * conv_params->dilation;
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
}
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
}
}
}
switch (conv_params->activation){
case RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0);
break;
case TANH:
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
break;
case SIGMOID:
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
break;
case NONE:
break;
case LEAKY_RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
}
}
output += conv_params->output_num;
}
}
return NULL;
}
int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
#if HAVE_PTHREAD_CANCEL
int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
int ret = 0, thread_stride;
ThreadParam *thread_param;
#else
ThreadParam thread_param = { 0 };
#endif
ThreadCommonParam thread_common_param;
const ConvolutionalParams *conv_params = parameters;
int height = operands[input_operand_indexes[0]].dims[1];
int width = operands[input_operand_indexes[0]].dims[2];
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
DnnOperand *output_operand = &operands[output_operand_index];
void *tmp;
output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0];
output_operand->dims[1] = height - pad_size * 2;
output_operand->dims[2] = width - pad_size * 2;
output_operand->dims[3] = conv_params->output_num;
output_operand->data_type = operands[input_operand_indexes[0]].data_type;
output_operand->length = ff_calculate_operand_data_length(output_operand);
if (output_operand->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
tmp = av_realloc(output_operand->data, output_operand->length);
if (!tmp) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
output_operand->data = tmp;
thread_common_param.output_data = output_operand->data;
thread_common_param.operands = operands;
thread_common_param.input_operand_indexes = input_operand_indexes;
thread_common_param.output_operand_index = output_operand_index;
thread_common_param.parameters = parameters;
thread_common_param.ctx = ctx;
#if HAVE_PTHREAD_CANCEL
thread_param = av_malloc_array(thread_num, sizeof(*thread_param));
if (!thread_param)
return AVERROR(ENOMEM);
thread_stride = (height - pad_size * 2) / thread_num;
//create threads
for (int i = 0; i < thread_num; i++){
int thread_ret = 0;
thread_param[i].thread_common_param = &thread_common_param;
thread_param[i].thread_start = thread_stride * i + pad_size;
thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride);
thread_ret = pthread_create(&thread_param[i].thread, NULL,
dnn_execute_layer_conv2d_thread, &thread_param[i]);
if (thread_ret) {
thread_num = i;
ret = AVERROR(thread_ret);
break;
}
}
for (int i = 0; i < thread_num; i++){
pthread_join(thread_param[i].thread, NULL);
}
//release memory
av_freep(&thread_param);
return ret;
#else
thread_param.thread_common_param = &thread_common_param;
thread_param.thread_start = pad_size;
thread_param.thread_end = height - pad_size;
dnn_execute_layer_conv2d_thread(&thread_param);
return 0;
#endif
}

View File

@@ -1,68 +0,0 @@
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
#include "dnn_backend_native.h"
typedef struct ConvolutionalParams{
int32_t input_num, output_num, kernel_size;
DNNActivationFunc activation;
DNNPaddingParam padding_method;
int32_t dilation;
int32_t has_bias;
float *kernel;
float *biases;
} ConvolutionalParams;
/**
* @brief Load the 2D Convolution Layer.
*
* It assigns the 2D convolution layer with ConvolutionalParams
* after parsing from the model file context.
*
* @param layer pointer to the DNN layer instance
* @param model_file_context pointer to model file context
* @param file_size model file size to check if data is read
* correctly from the model file
* @param operands_num operand count of the whole model to
* check if data is read correctly from the model file
* @return number of bytes read from the model file
* @retval 0 if out of memory or an error occurs
*/
int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
/**
* @brief Execute the 2D Convolution Layer.
*
* @param operands all operands for the model
* @param input_operand_indexes input operand indexes for this layer
* @param output_operand_index output operand index for this layer
* @param parameters convolution parameters
* @param ctx pointer to Native model context for logging
* @retval 0 if the execution succeeds
* @retval AVERROR(ENOMEM) if memory allocation fails
* @retval AVERROR(EINVAL) for invalid arguments
*/
int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,151 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_dense.h"
int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
DenseParams *dense_params;
int kernel_size;
int dnn_size = 0;
dense_params = av_malloc(sizeof(*dense_params));
if (!dense_params)
return 0;
dense_params->activation = (int32_t)avio_rl32(model_file_context);
dense_params->input_num = (int32_t)avio_rl32(model_file_context);
dense_params->output_num = (int32_t)avio_rl32(model_file_context);
dense_params->has_bias = (int32_t)avio_rl32(model_file_context);
dnn_size += 16;
kernel_size = dense_params->input_num * dense_params->output_num;
dnn_size += kernel_size * 4;
if (dense_params->has_bias)
dnn_size += dense_params->output_num * 4;
if (dnn_size > file_size || dense_params->input_num <= 0 ||
dense_params->output_num <= 0){
av_freep(&dense_params);
return 0;
}
dense_params->kernel = av_malloc(kernel_size * sizeof(float));
if (!dense_params->kernel) {
av_freep(&dense_params);
return 0;
}
for (int i = 0; i < kernel_size; ++i) {
dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
}
dense_params->biases = NULL;
if (dense_params->has_bias) {
dense_params->biases = av_malloc(dense_params->output_num * sizeof(float));
if (!dense_params->biases){
av_freep(&dense_params->kernel);
av_freep(&dense_params);
return 0;
}
for (int i = 0; i < dense_params->output_num; ++i){
dense_params->biases[i] = av_int2float(avio_rl32(model_file_context));
}
}
layer->params = dense_params;
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
float *output;
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
const DenseParams *dense_params = parameters;
int src_linesize = width * channel;
DnnOperand *output_operand = &operands[output_operand_index];
output_operand->dims[0] = number;
output_operand->dims[1] = height;
output_operand->dims[2] = width;
output_operand->dims[3] = dense_params->output_num;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = ff_calculate_operand_data_length(output_operand);
if (output_operand->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
output = output_operand->data;
av_assert0(channel == dense_params->input_num);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) {
if (dense_params->has_bias)
output[n_filter] = dense_params->biases[n_filter];
else
output[n_filter] = 0.f;
for (int ch = 0; ch < dense_params->input_num; ++ch) {
float input_pel;
input_pel = input[y * src_linesize + x * dense_params->input_num + ch];
output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch];
}
switch (dense_params->activation){
case RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0);
break;
case TANH:
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
break;
case SIGMOID:
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
break;
case NONE:
break;
case LEAKY_RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
}
}
output += dense_params->output_num;
}
}
return 0;
}

View File

@@ -1,65 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H
#include "dnn_backend_native.h"
typedef struct DenseParams{
int32_t input_num, output_num;
DNNActivationFunc activation;
int32_t has_bias;
float *kernel;
float *biases;
} DenseParams;
/**
* @brief Load the Densely-Connected Layer.
*
* It assigns the densely connected layer with DenseParams
* after parsing from the model file context.
*
* @param layer pointer to the DNN layer instance
* @param model_file_context pointer to model file context
* @param file_size model file size to check if data is read
* correctly from the model file
* @param operands_num operand count of the whole model to
* check if data is read correctly from the model file
* @return number of bytes read from the model file
* @retval 0 if out of memory or an error occurs
*/
int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
/**
* @brief Execute the Densely-Connected Layer.
*
* @param operands all operands for the model
* @param input_operand_indexes input operand indexes for this layer
* @param output_operand_index output operand index for this layer
* @param parameters dense layer parameters
* @param ctx pointer to Native model context for logging
* @retval 0 if the execution succeeds
* @retval AVERROR(ENOMEM) if memory allocation fails
* @retval AVERROR(EINVAL) for invalid arguments
*/
int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,102 +0,0 @@
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "dnn_backend_native_layer_depth2space.h"
int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
DepthToSpaceParams *params;
int dnn_size = 0;
params = av_malloc(sizeof(*params));
if (!params)
return 0;
params->block_size = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
layer->params = params;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
float *output;
const DepthToSpaceParams *params = parameters;
int block_size = params->block_size;
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channels = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
int y, x, by, bx, ch;
int new_channels = channels / (block_size * block_size);
int output_linesize = width * channels;
int by_linesize = output_linesize / block_size;
int x_linesize = new_channels * block_size;
DnnOperand *output_operand = &operands[output_operand_index];
output_operand->dims[0] = number;
output_operand->dims[1] = height * block_size;
output_operand->dims[2] = width * block_size;
output_operand->dims[3] = new_channels;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = ff_calculate_operand_data_length(output_operand);
if (output_operand->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
output = output_operand->data;
for (y = 0; y < height; ++y){
for (x = 0; x < width; ++x){
for (by = 0; by < block_size; ++by){
for (bx = 0; bx < block_size; ++bx){
for (ch = 0; ch < new_channels; ++ch){
output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch];
}
input += new_channels;
}
}
}
output += output_linesize;
}
return 0;
}

View File

@@ -1,72 +0,0 @@
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference functions interface for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H
#include "../dnn_interface.h"
#include "libavformat/avio.h"
typedef struct DepthToSpaceParams{
int block_size;
} DepthToSpaceParams;
/**
* @brief Load the Depth to Space Layer.
*
* It assigns the depth to space layer with DepthToSpaceParams
* after parsing from the model file context.
*
* @param layer pointer to the DNN layer instance
* @param model_file_context pointer to model file context
* @param file_size model file size to check if data is read
* correctly from the model file
* @param operands_num operand count of the whole model to
* check if data is read correctly from the model file
* @return number of bytes read from the model file
* @retval 0 if an error occurs or out of memory
*/
int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
/**
* @brief Execute the Depth to Space Layer.
*
* It rearranges the input data from depth into spatial
* form by applying Depth to Space transformation.
*
* @param operands all operands for the model
* @param input_operand_indexes input operand indexes for this layer
* @param output_operand_index output operand index for this layer
* @param parameters depth to space layer parameters
* @param ctx pointer to Native model context for logging
* @retval 0 if the execution succeeds
* @retval AVERROR(ENOMEM) if memory allocation fails
* @retval AVERROR(EINVAL) for invalid arguments
*/
int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,193 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "dnn_backend_native_layer_mathbinary.h"
typedef float (*FunType)(float src0, float src1);
static float sub(float src0, float src1)
{
return src0 - src1;
}
static float add(float src0, float src1)
{
return src0 + src1;
}
static float mul(float src0, float src1)
{
return src0 * src1;
}
static float realdiv(float src0, float src1)
{
return src0 / src1;
}
static float minimum(float src0, float src1)
{
return FFMIN(src0, src1);
}
static float floormod(float src0, float src1)
{
return (float)((int)(src0) % (int)(src1));
}
static void math_binary_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes)
{
int dims_count;
const float *src;
float *dst;
dims_count = ff_calculate_operand_dims_count(output);
src = input->data;
dst = output->data;
if (params->input0_broadcast || params->input1_broadcast) {
for (int i = 0; i < dims_count; ++i) {
dst[i] = pfun(params->v, src[i]);
}
} else {
const DnnOperand *input1 = &operands[input_operand_indexes[1]];
const float *src1 = input1->data;
for (int i = 0; i < dims_count; ++i) {
dst[i] = pfun(src[i], src1[i]);
}
}
}
static void math_binary_not_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes)
{
int dims_count;
const float *src;
float *dst;
dims_count = ff_calculate_operand_dims_count(output);
src = input->data;
dst = output->data;
if (params->input0_broadcast) {
for (int i = 0; i < dims_count; ++i) {
dst[i] = pfun(params->v, src[i]);
}
} else if (params->input1_broadcast) {
for (int i = 0; i < dims_count; ++i) {
dst[i] = pfun(src[i], params->v);
}
} else {
const DnnOperand *input1 = &operands[input_operand_indexes[1]];
const float *src1 = input1->data;
for (int i = 0; i < dims_count; ++i) {
dst[i] = pfun(src[i], src1[i]);
}
}
}
int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
DnnLayerMathBinaryParams params = { 0 };
int dnn_size = 0;
int input_index = 0;
params.bin_op = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
params.input0_broadcast = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (params.input0_broadcast) {
params.v = av_int2float(avio_rl32(model_file_context));
} else {
layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context);
if (layer->input_operand_indexes[input_index] >= operands_num) {
return 0;
}
input_index++;
}
dnn_size += 4;
params.input1_broadcast = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (params.input1_broadcast) {
params.v = av_int2float(avio_rl32(model_file_context));
} else {
layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context);
if (layer->input_operand_indexes[input_index] >= operands_num) {
return 0;
}
input_index++;
}
dnn_size += 4;
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (layer->output_operand_index >= operands_num) {
return 0;
}
layer->params = av_memdup(&params, sizeof(params));
if (!layer->params)
return 0;
return dnn_size;
}
int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
const DnnOperand *input = &operands[input_operand_indexes[0]];
DnnOperand *output = &operands[output_operand_index];
const DnnLayerMathBinaryParams *params = parameters;
for (int i = 0; i < 4; ++i)
output->dims[i] = input->dims[i];
output->data_type = input->data_type;
output->length = ff_calculate_operand_data_length(output);
if (output->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
output->data = av_realloc(output->data, output->length);
if (!output->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
switch (params->bin_op) {
case DMBO_SUB:
math_binary_not_commutative(sub, params, input, output, operands, input_operand_indexes);
return 0;
case DMBO_ADD:
math_binary_commutative(add, params, input, output, operands, input_operand_indexes);
return 0;
case DMBO_MUL:
math_binary_commutative(mul, params, input, output, operands, input_operand_indexes);
return 0;
case DMBO_REALDIV:
math_binary_not_commutative(realdiv, params, input, output, operands, input_operand_indexes);
return 0;
case DMBO_MINIMUM:
math_binary_commutative(minimum, params, input, output, operands, input_operand_indexes);
return 0;
case DMBO_FLOORMOD:
math_binary_not_commutative(floormod, params, input, output, operands, input_operand_indexes);
return 0;
default:
av_log(ctx, AV_LOG_ERROR, "Unmatch math binary operator\n");
return AVERROR(EINVAL);
}
}

View File

@@ -1,54 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference functions interface for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H
#include "libavformat/avio.h"
#include "dnn_backend_native.h"
typedef enum {
DMBO_SUB = 0,
DMBO_ADD = 1,
DMBO_MUL = 2,
DMBO_REALDIV = 3,
DMBO_MINIMUM = 4,
DMBO_FLOORMOD = 5,
DMBO_COUNT
} DNNMathBinaryOperation;
typedef struct DnnLayerMathBinaryParams{
DNNMathBinaryOperation bin_op;
int input0_broadcast;
int input1_broadcast;
float v;
} DnnLayerMathBinaryParams;
int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,156 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include <math.h>
#include "dnn_backend_native.h"
#include "dnn_backend_native_layer_mathunary.h"
int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
DnnLayerMathUnaryParams *params;
int dnn_size = 0;
params = av_malloc(sizeof(*params));
if(!params)
return 0;
params->un_op = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
layer->params = params;
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
const DnnOperand *input = &operands[input_operand_indexes[0]];
DnnOperand *output = &operands[output_operand_index];
const DnnLayerMathUnaryParams *params = parameters;
int dims_count;
const float *src;
float *dst;
for (int i = 0; i < 4; ++i)
output->dims[i] = input->dims[i];
output->data_type = input->data_type;
output->length = ff_calculate_operand_data_length(output);
if (output->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
output->data = av_realloc(output->data, output->length);
if (!output->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
dims_count = ff_calculate_operand_dims_count(output);
src = input->data;
dst = output->data;
switch (params->un_op) {
case DMUO_ABS:
for (int i = 0; i < dims_count; ++i)
dst[i] = FFABS(src[i]);
return 0;
case DMUO_SIN:
for (int i = 0; i < dims_count; ++i)
dst[i] = sin(src[i]);
return 0;
case DMUO_COS:
for (int i = 0; i < dims_count; ++i)
dst[i] = cos(src[i]);
return 0;
case DMUO_TAN:
for (int i = 0; i < dims_count; ++i)
dst[i] = tan(src[i]);
return 0;
case DMUO_ASIN:
for (int i = 0; i < dims_count; ++i)
dst[i] = asin(src[i]);
return 0;
case DMUO_ACOS:
for (int i = 0; i < dims_count; ++i)
dst[i] = acos(src[i]);
return 0;
case DMUO_ATAN:
for (int i = 0; i < dims_count; ++i)
dst[i] = atan(src[i]);
return 0;
case DMUO_SINH:
for (int i = 0; i < dims_count; ++i)
dst[i] = sinh(src[i]);
return 0;
case DMUO_COSH:
for (int i = 0; i < dims_count; ++i)
dst[i] = cosh(src[i]);
return 0;
case DMUO_TANH:
for (int i = 0; i < dims_count; ++i)
dst[i] = tanh(src[i]);
return 0;
case DMUO_ASINH:
for (int i = 0; i < dims_count; ++i)
dst[i] = asinh(src[i]);
return 0;
case DMUO_ACOSH:
for (int i = 0; i < dims_count; ++i)
dst[i] = acosh(src[i]);
return 0;
case DMUO_ATANH:
for (int i = 0; i < dims_count; ++i)
dst[i] = atanh(src[i]);
return 0;
case DMUO_CEIL:
for (int i = 0; i < dims_count; ++i)
dst[i] = ceil(src[i]);
return 0;
case DMUO_FLOOR:
for (int i = 0; i < dims_count; ++i)
dst[i] = floor(src[i]);
return 0;
case DMUO_ROUND:
for (int i = 0; i < dims_count; ++i)
dst[i] = round(src[i]);
return 0;
case DMUO_EXP:
for (int i = 0; i < dims_count; ++i)
dst[i] = exp(src[i]);
return 0;
default:
av_log(ctx, AV_LOG_ERROR, "Unmatch math unary operator\n");
return AVERROR(EINVAL);
}
}

View File

@@ -1,92 +0,0 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference functions interface for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H
#include "libavformat/avio.h"
#include "dnn_backend_native.h"
typedef enum {
DMUO_ABS = 0,
DMUO_SIN = 1,
DMUO_COS = 2,
DMUO_TAN = 3,
DMUO_ASIN = 4,
DMUO_ACOS = 5,
DMUO_ATAN = 6,
DMUO_SINH = 7,
DMUO_COSH = 8,
DMUO_TANH = 9,
DMUO_ASINH = 10,
DMUO_ACOSH = 11,
DMUO_ATANH = 12,
DMUO_CEIL = 13,
DMUO_FLOOR = 14,
DMUO_ROUND = 15,
DMUO_EXP = 16,
DMUO_COUNT
} DNNMathUnaryOperation;
typedef struct DnnLayerMathUnaryParams{
DNNMathUnaryOperation un_op;
} DnnLayerMathUnaryParams;
/**
* @brief Load the Unary Math Layer.
*
* It assigns the unary math layer with DnnLayerMathUnaryParams
* after parsing from the model file context.
*
* @param layer pointer to the DNN layer instance
* @param model_file_context pointer to model file context
* @param file_size model file size to check if data is read
* correctly from the model file
* @param operands_num operand count of the whole model to
* check if data is read correctly from the model file
* @return number of bytes read from the model file
* @retval 0 if out of memory or an error occurs
*/
int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
/**
* @brief Execute the Unary Math Layer.
*
* It applies the unary operator parsed while
* loading to the given input operands.
*
* @param operands all operands for the model
* @param input_operand_indexes input operand indexes for this layer
* @param output_operand_index output operand index for this layer
* @param parameters unary math layer parameters
* @param ctx pointer to Native model context for logging
* @retval 0 if the execution succeeds
* @retval AVERROR(ENOMEM) if memory allocation fails
* @retval AVERROR(EINVAL) for invalid arguments
*/
int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,83 +0,0 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "dnn_backend_native_layer_maximum.h"
int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
DnnLayerMaximumParams *params;
int dnn_size = 0;
params = av_malloc(sizeof(*params));
if (!params)
return 0;
params->val.u32 = avio_rl32(model_file_context);
dnn_size += 4;
layer->params = params;
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
const DnnOperand *input = &operands[input_operand_indexes[0]];
DnnOperand *output = &operands[output_operand_index];
const DnnLayerMaximumParams *params = parameters;
int dims_count;
const float *src;
float *dst;
for (int i = 0; i < 4; ++i)
output->dims[i] = input->dims[i];
output->data_type = input->data_type;
output->length = ff_calculate_operand_data_length(output);
if (output->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
output->data = av_realloc(output->data, output->length);
if (!output->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
dims_count = ff_calculate_operand_dims_count(output);
src = input->data;
dst = output->data;
for (int i = 0; i < dims_count; ++i)
dst[i] = FFMAX(src[i], params->val.y);
return 0;
}

View File

@@ -1,44 +0,0 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference functions interface for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
#include "libavformat/avio.h"
#include "dnn_backend_native.h"
typedef struct DnnLayerMaximumParams{
union {
uint32_t u32;
float y;
}val;
} DnnLayerMaximumParams;
int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,268 +0,0 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_pad.h"
int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
LayerPadParams *params;
int dnn_size = 0;
params = av_malloc(sizeof(*params));
if (!params)
return 0;
params->mode = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
for (int i = 0; i < 4; ++i) {
params->paddings[i][0] = avio_rl32(model_file_context);
params->paddings[i][1] = avio_rl32(model_file_context);
dnn_size += 8;
}
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
layer->params = params;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
static int before_get_buddy(int given, int paddings, LayerPadModeParam mode)
{
if (mode == LPMP_SYMMETRIC) {
return (2 * paddings - 1 - given);
} else if (mode == LPMP_REFLECT) {
return (2 * paddings - given);
} else {
av_assert0(!"should not reach here");
return 0;
}
}
static int after_get_buddy(int given, int border, LayerPadModeParam mode)
{
if (mode == LPMP_SYMMETRIC) {
int offset = given - border;
return (border - 1 - offset);
} else if (mode == LPMP_REFLECT) {
int offset = given - border;
return (border - 2 - offset);
} else {
av_assert0(!"should not reach here");
return 0;
}
}
int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
int32_t before_paddings;
int32_t after_paddings;
float* output;
const LayerPadParams *params = parameters;
// suppose format is <N, H, W, C>
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
int new_number = number + params->paddings[0][0] + params->paddings[0][1];
int new_height = height + params->paddings[1][0] + params->paddings[1][1];
int new_width = width + params->paddings[2][0] + params->paddings[2][1];
int new_channel = channel + params->paddings[3][0] + params->paddings[3][1];
int c_stride = channel;
int wc_stride = c_stride * width;
int hwc_stride = wc_stride * height;
int new_c_stride = new_channel;
int new_wc_stride = new_c_stride * new_width;
int new_hwc_stride = new_wc_stride * new_height;
DnnOperand *output_operand = &operands[output_operand_index];
output_operand->dims[0] = new_number;
output_operand->dims[1] = new_height;
output_operand->dims[2] = new_width;
output_operand->dims[3] = new_channel;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = ff_calculate_operand_data_length(output_operand);
if (output_operand->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return AVERROR(EINVAL);
}
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return AVERROR(ENOMEM);
}
output = output_operand->data;
// copy the original data
for (int n = 0; n < number; n++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
const float *src = input + n * hwc_stride + h * wc_stride + w * c_stride;
float *dst = output + (n + params->paddings[0][0]) * new_hwc_stride
+ (h + params->paddings[1][0]) * new_wc_stride
+ (w + params->paddings[2][0]) * new_c_stride
+ params->paddings[3][0];
memcpy(dst, src, channel * sizeof(float));
}
}
}
// handle the first dimension
before_paddings = params->paddings[0][0];
after_paddings = params->paddings[0][1];
for (int n = 0; n < before_paddings; n++) {
float *dst = output + n * new_hwc_stride;
if (params->mode == LPMP_CONSTANT) {
for (int i = 0; i < new_hwc_stride; i++) {
dst[i] = params->constant_values;
}
}
else {
int buddy = before_get_buddy(n, before_paddings, params->mode);
float *src = output + buddy * new_hwc_stride;
memcpy(dst, src, new_hwc_stride * sizeof(float));
}
}
for (int n = 0; n < after_paddings; n++) {
int given = number + before_paddings + n;
float *dst = output + given * new_hwc_stride;
if (params->mode == LPMP_CONSTANT) {
for (int i = 0; i < new_hwc_stride; i++) {
dst[i] = params->constant_values;
}
} else {
int buddy = after_get_buddy(given, number + before_paddings, params->mode);
float *src = output + buddy * new_hwc_stride;
memcpy(dst, src, new_hwc_stride * sizeof(float));
}
}
// handle the second dimension
before_paddings = params->paddings[1][0];
after_paddings = params->paddings[1][1];
for (int n = 0; n < new_number; n++) {
float *start = output + n * new_hwc_stride;
for (int h = 0; h < before_paddings; h++) {
float *dst = start + h * new_wc_stride;
if (params->mode == LPMP_CONSTANT) {
for (int i = 0; i < new_wc_stride; i++) {
dst[i] = params->constant_values;
}
} else {
int buddy = before_get_buddy(h, before_paddings, params->mode);
float *src = start + buddy * new_wc_stride;
memcpy(dst, src, new_wc_stride * sizeof(float));
}
}
for (int h = 0; h < after_paddings; h++) {
int given = height + before_paddings + h;
float *dst = start + given * new_wc_stride;
if (params->mode == LPMP_CONSTANT) {
for (int i = 0; i < new_wc_stride; i++) {
dst[i] = params->constant_values;
}
} else {
int buddy = after_get_buddy(given, height + before_paddings, params->mode);
float *src = start + buddy * new_wc_stride;
memcpy(dst, src, new_wc_stride * sizeof(float));
}
}
}
// handle the third dimension
before_paddings = params->paddings[2][0];
after_paddings = params->paddings[2][1];
for (int n = 0; n < new_number; n++) {
for (int h = 0; h < new_height; h++) {
float *start = output + n * new_hwc_stride + h * new_wc_stride;
for (int w = 0; w < before_paddings; w++) {
float *dst = start + w * new_c_stride;
if (params->mode == LPMP_CONSTANT) {
for (int i = 0; i < new_c_stride; i++) {
dst[i] = params->constant_values;
}
} else {
int buddy = before_get_buddy(w, before_paddings, params->mode);
float *src = start + buddy * new_c_stride;
memcpy(dst, src, new_c_stride * sizeof(float));
}
}
for (int w = 0; w < after_paddings; w++) {
int given = width + before_paddings + w;
float *dst = start + given * new_c_stride;
if (params->mode == LPMP_CONSTANT) {
for (int i = 0; i < new_c_stride; i++) {
dst[i] = params->constant_values;
}
} else {
int buddy = after_get_buddy(given, width + before_paddings, params->mode);
float *src = start + buddy * new_c_stride;
memcpy(dst, src, new_c_stride * sizeof(float));
}
}
}
}
// handle the fourth dimension
before_paddings = params->paddings[3][0];
after_paddings = params->paddings[3][1];
for (int n = 0; n < new_number; n++) {
for (int h = 0; h < new_height; h++) {
for (int w = 0; w < new_width; w++) {
float *start = output + n * new_hwc_stride + h * new_wc_stride + w * new_c_stride;
for (int c = 0; c < before_paddings; c++) {
float *dst = start + c;
if (params->mode == LPMP_CONSTANT) {
*dst = params->constant_values;
} else {
int buddy = before_get_buddy(c, before_paddings, params->mode);
float *src = start + buddy;
*dst = *src;
}
}
for (int c = 0; c < after_paddings; c++) {
int given = channel + before_paddings + c;
float *dst = start + given;
if (params->mode == LPMP_CONSTANT) {
*dst = params->constant_values;
} else {
int buddy = after_get_buddy(given, channel + before_paddings, params->mode);
float *src = start + buddy;
*dst = *src;
}
}
}
}
}
return 0;
}

View File

@@ -1,43 +0,0 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* layer pad (equivalent to tf.pad) for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H
#include <stdint.h>
#include "dnn_backend_native.h"
typedef enum {LPMP_CONSTANT, LPMP_REFLECT, LPMP_SYMMETRIC} LayerPadModeParam;
typedef struct LayerPadParams{
int32_t paddings[4][2];
LayerPadModeParam mode;
float constant_values;
} LayerPadParams;
int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
#endif

View File

@@ -1,42 +0,0 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include "dnn_backend_native_layers.h"
#include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layer_depth2space.h"
#include "dnn_backend_native_layer_maximum.h"
#include "dnn_backend_native_layer_mathbinary.h"
#include "dnn_backend_native_layer_mathunary.h"
#include "dnn_backend_native_layer_avgpool.h"
#include "dnn_backend_native_layer_dense.h"
const LayerFunc ff_layer_funcs[DLT_COUNT] = {
{NULL, NULL},
{ff_dnn_execute_layer_conv2d, ff_dnn_load_layer_conv2d},
{ff_dnn_execute_layer_depth2space, ff_dnn_load_layer_depth2space},
{ff_dnn_execute_layer_pad, ff_dnn_load_layer_pad},
{ff_dnn_execute_layer_maximum, ff_dnn_load_layer_maximum},
{ff_dnn_execute_layer_math_binary, ff_dnn_load_layer_math_binary},
{ff_dnn_execute_layer_math_unary, ff_dnn_load_layer_math_unary},
{ff_dnn_execute_layer_avg_pool, ff_dnn_load_layer_avg_pool},
{ff_dnn_execute_layer_dense, ff_dnn_load_layer_dense},
};

View File

@@ -1,38 +0,0 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H
#include <stdint.h>
#include "dnn_backend_native.h"
typedef int (*LAYER_EXEC_FUNC)(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx);
typedef int (*LAYER_LOAD_FUNC)(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
typedef struct LayerFunc {
LAYER_EXEC_FUNC pf_exec;
LAYER_LOAD_FUNC pf_load;
}LayerFunc;
extern const LayerFunc ff_layer_funcs[DLT_COUNT];
#endif

View File

@@ -24,17 +24,13 @@
*/
#include "dnn_backend_tf.h"
#include "dnn_backend_native.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layer_depth2space.h"
#include "libavformat/avio.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/cpu.h"
#include "libavutil/opt.h"
#include "libavcodec/defs.h"
#include "../internal.h"
#include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_maximum.h"
#include "dnn_io_proc.h"
#include "dnn_backend_common.h"
#include "safe_queue.h"
@@ -481,363 +477,6 @@ static int load_tf_model(TFModel *tf_model, const char *model_filename)
#define NAME_BUFFER_SIZE 256
static int add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op,
ConvolutionalParams* params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_Operation *op;
TF_OperationDescription *op_desc;
TF_Output input;
int64_t strides[] = {1, 1, 1, 1};
TF_Tensor *kernel_tensor = NULL, *biases_tensor = NULL;
int64_t dims[4];
int dims_len;
char name_buffer[NAME_BUFFER_SIZE];
int32_t size;
size = params->input_num * params->output_num * params->kernel_size * params->kernel_size;
input.index = 0;
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
dims[0] = params->output_num;
dims[1] = params->kernel_size;
dims[2] = params->kernel_size;
dims[3] = params->input_num;
dims_len = 4;
kernel_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float));
memcpy(TF_TensorData(kernel_tensor), params->kernel, size * sizeof(float));
TF_SetAttrTensor(op_desc, "value", kernel_tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer);
input.oper = op;
TF_AddInput(op_desc, input);
input.oper = transpose_op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrType(op_desc, "Tperm", TF_INT32);
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer);
input.oper = *cur_op;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrIntList(op_desc, "strides", strides, 4);
TF_SetAttrString(op_desc, "padding", "VALID", 5);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
dims[0] = params->output_num;
dims_len = 1;
biases_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float));
memcpy(TF_TensorData(biases_tensor), params->biases, params->output_num * sizeof(float));
TF_SetAttrTensor(op_desc, "value", biases_tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer);
input.oper = *cur_op;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer);
switch (params->activation){
case RELU:
op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer);
break;
case TANH:
op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer);
break;
case SIGMOID:
op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer);
break;
default:
avpriv_report_missing_feature(ctx, "convolutional activation function %d", params->activation);
return AVERROR(ENOSYS);
}
input.oper = *cur_op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
goto err;
}
return 0;
err:
TF_DeleteTensor(kernel_tensor);
TF_DeleteTensor(biases_tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to add conv layer %d\n", layer);
return DNN_GENERIC_ERROR;
}
static int add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
DepthToSpaceParams *params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_OperationDescription *op_desc;
TF_Output input;
char name_buffer[NAME_BUFFER_SIZE];
snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer);
input.oper = *cur_op;
input.index = 0;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrInt(op_desc, "block_size", params->block_size);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer);
return DNN_GENERIC_ERROR;
}
return 0;
}
static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
LayerPadParams *params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_Operation *op;
TF_Tensor *tensor;
TF_OperationDescription *op_desc;
TF_Output input;
int32_t *pads;
int64_t pads_shape[] = {4, 2};
char name_buffer[NAME_BUFFER_SIZE];
snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_INT32);
tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t));
pads = (int32_t *)TF_TensorData(tensor);
pads[0] = params->paddings[0][0];
pads[1] = params->paddings[0][1];
pads[2] = params->paddings[1][0];
pads[3] = params->paddings[1][1];
pads[4] = params->paddings[2][0];
pads[5] = params->paddings[2][1];
pads[6] = params->paddings[3][0];
pads[7] = params->paddings[3][1];
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
TF_DeleteTensor(tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer);
return DNN_GENERIC_ERROR;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
TF_DeleteTensor(tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer);
return DNN_GENERIC_ERROR;
}
op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad");
input.oper = *cur_op;
input.index = 0;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrType(op_desc, "Tpaddings", TF_INT32);
TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
TF_DeleteTensor(tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer);
return DNN_GENERIC_ERROR;
}
return 0;
}
static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
DnnLayerMaximumParams *params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_Operation *op;
TF_Tensor *tensor;
TF_OperationDescription *op_desc;
TF_Output input;
float *y;
char name_buffer[NAME_BUFFER_SIZE];
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT));
y = (float *)TF_TensorData(tensor);
*y = params->val.y;
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
TF_DeleteTensor(tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer);
return DNN_GENERIC_ERROR;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
TF_DeleteTensor(tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer);
return DNN_GENERIC_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer);
input.oper = *cur_op;
input.index = 0;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
TF_DeleteTensor(tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer);
return DNN_GENERIC_ERROR;
}
return 0;
}
static int load_native_model(TFModel *tf_model, const char *model_filename)
{
TFContext *ctx = &tf_model->ctx;
int32_t layer;
TF_OperationDescription *op_desc;
TF_Operation *op;
TF_Operation *transpose_op;
TF_Tensor *tensor = NULL;
TF_Output input;
int32_t *transpose_perm;
int64_t transpose_perm_shape[] = {4};
int64_t input_shape[] = {1, -1, -1, -1};
int layer_add_res;
DNNModel *model = NULL;
NativeModel *native_model;
model = ff_dnn_load_model_native(model_filename, DFT_PROCESS_FRAME, NULL, NULL);
if (!model){
av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n");
return AVERROR(EINVAL);
}
native_model = model->model;
tf_model->graph = TF_NewGraph();
tf_model->status = TF_NewStatus();
#define CLEANUP_ON_ERROR(tf_model) \
{ \
TF_DeleteTensor(tensor); \
TF_DeleteGraph(tf_model->graph); \
TF_DeleteStatus(tf_model->status); \
av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \
return DNN_GENERIC_ERROR; \
}
op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x");
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
TF_SetAttrShape(op_desc, "shape", input_shape, 4);
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
CLEANUP_ON_ERROR(tf_model);
}
op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm");
TF_SetAttrType(op_desc, "dtype", TF_INT32);
tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t));
transpose_perm = (int32_t *)TF_TensorData(tensor);
transpose_perm[0] = 1;
transpose_perm[1] = 2;
transpose_perm[2] = 3;
transpose_perm[3] = 0;
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
CLEANUP_ON_ERROR(tf_model);
}
transpose_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
CLEANUP_ON_ERROR(tf_model);
}
for (layer = 0; layer < native_model->layers_num; ++layer){
switch (native_model->layers[layer].type){
case DLT_INPUT:
layer_add_res = 0;
break;
case DLT_CONV2D:
layer_add_res = add_conv_layer(tf_model, transpose_op, &op,
(ConvolutionalParams *)native_model->layers[layer].params, layer);
break;
case DLT_DEPTH_TO_SPACE:
layer_add_res = add_depth_to_space_layer(tf_model, &op,
(DepthToSpaceParams *)native_model->layers[layer].params, layer);
break;
case DLT_MIRROR_PAD:
layer_add_res = add_pad_layer(tf_model, &op,
(LayerPadParams *)native_model->layers[layer].params, layer);
break;
case DLT_MAXIMUM:
layer_add_res = add_maximum_layer(tf_model, &op,
(DnnLayerMaximumParams *)native_model->layers[layer].params, layer);
break;
default:
CLEANUP_ON_ERROR(tf_model);
}
if (layer_add_res != 0){
CLEANUP_ON_ERROR(tf_model);
}
}
op_desc = TF_NewOperation(tf_model->graph, "Identity", "y");
input.oper = op;
input.index = 0;
TF_AddInput(op_desc, input);
TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
CLEANUP_ON_ERROR(tf_model);
}
ff_dnn_free_model_native(&model);
return 0;
}
DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
{
DNNModel *model = NULL;
@@ -867,9 +506,8 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
}
if (load_tf_model(tf_model, model_filename) != 0){
if (load_native_model(tf_model, model_filename) != 0){
goto err;
}
av_log(ctx, AV_LOG_ERROR, "Failed to load TensorFlow model: \"%s\"\n", model_filename);
goto err;
}
if (ctx->options.nireq <= 0) {