1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

opus_pvq: port to allow for SIMD functions

Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This commit is contained in:
Rostislav Pehlivanov 2017-05-10 06:47:44 +01:00
parent e6ec482b42
commit 8e7e74df93
5 changed files with 107 additions and 78 deletions

View File

@ -753,15 +753,15 @@ static void celt_decode_bands(CeltFrame *f, OpusRangeCoder *rc)
} }
if (f->dual_stereo) { if (f->dual_stereo) {
cm[0] = ff_celt_decode_band(f, rc, i, X, NULL, band_size, b / 2, f->blocks, cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks,
effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
cm[1] = ff_celt_decode_band(f, rc, i, Y, NULL, band_size, b/2, f->blocks, cm[1] = f->pvq->decode_band(f->pvq, f, rc, i, Y, NULL, band_size, b/2, f->blocks,
effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size, effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
} else { } else {
cm[0] = ff_celt_decode_band(f, rc, i, X, Y, band_size, b, f->blocks, cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks,
effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
cm[1] = cm[0]; cm[1] = cm[0];
@ -984,6 +984,8 @@ void ff_celt_free(CeltFrame **f)
for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++) for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
ff_mdct15_uninit(&frm->imdct[i]); ff_mdct15_uninit(&frm->imdct[i]);
ff_celt_pvq_uninit(&frm->pvq);
av_freep(&frm->dsp); av_freep(&frm->dsp);
av_freep(f); av_freep(f);
} }
@ -1006,11 +1008,12 @@ int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels)
frm->avctx = avctx; frm->avctx = avctx;
frm->output_channels = output_channels; frm->output_channels = output_channels;
for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++) { for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f); if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f)) < 0)
if (ret < 0) goto fail;
if ((ret = ff_celt_pvq_init(&frm->pvq)) < 0)
goto fail; goto fail;
}
frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
if (!frm->dsp) { if (!frm->dsp) {

View File

@ -27,6 +27,7 @@
#include <float.h> #include <float.h>
#include "opus.h" #include "opus.h"
#include "opus_pvq.h"
#include "mdct15.h" #include "mdct15.h"
#include "libavutil/float_dsp.h" #include "libavutil/float_dsp.h"
@ -43,6 +44,8 @@
#define CELT_POSTFILTER_MINPERIOD 15 #define CELT_POSTFILTER_MINPERIOD 15
#define CELT_ENERGY_SILENCE (-28.0f) #define CELT_ENERGY_SILENCE (-28.0f)
typedef struct CeltPVQ CeltPVQ;
enum CeltSpread { enum CeltSpread {
CELT_SPREAD_NONE, CELT_SPREAD_NONE,
CELT_SPREAD_LIGHT, CELT_SPREAD_LIGHT,
@ -92,6 +95,7 @@ struct CeltFrame {
MDCT15Context *imdct[4]; MDCT15Context *imdct[4];
AVFloatDSPContext *dsp; AVFloatDSPContext *dsp;
CeltBlock block[2]; CeltBlock block[2];
CeltPVQ *pvq;
int channels; int channels;
int output_channels; int output_channels;
@ -125,8 +129,6 @@ struct CeltFrame {
int fine_priority[CELT_MAX_BANDS]; int fine_priority[CELT_MAX_BANDS];
int pulses [CELT_MAX_BANDS]; int pulses [CELT_MAX_BANDS];
int tf_change [CELT_MAX_BANDS]; int tf_change [CELT_MAX_BANDS];
DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
}; };
/* LCG for noise generation */ /* LCG for noise generation */

View File

@ -363,7 +363,7 @@ static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, u
* Faster than libopus's search, operates entirely in the signed domain. * Faster than libopus's search, operates entirely in the signed domain.
* Slightly worse/better depending on N, K and the input vector. * Slightly worse/better depending on N, K and the input vector.
*/ */
static int celt_pvq_search(float *X, int *y, int K, int N) static float ppp_pvq_search_c(float *X, int *y, int K, int N)
{ {
int i, y_norm = 0; int i, y_norm = 0;
float res = 0.0f, xy_norm = 0.0f; float res = 0.0f, xy_norm = 0.0f;
@ -408,17 +408,17 @@ static int celt_pvq_search(float *X, int *y, int K, int N)
y[max_idx] += phase; y[max_idx] += phase;
} }
return y_norm; return (float)y_norm;
} }
static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
enum CeltSpread spread, uint32_t blocks, float gain, enum CeltSpread spread, uint32_t blocks, float gain,
void *scratch) CeltPVQ *pvq)
{ {
int *y = scratch; int *y = pvq->qcoeff;
celt_exp_rotation(X, N, blocks, K, spread, 1); celt_exp_rotation(X, N, blocks, K, spread, 1);
gain /= sqrtf(celt_pvq_search(X, y, K, N)); gain /= sqrtf(pvq->pvq_search(X, y, K, N));
celt_encode_pulses(rc, y, N, K); celt_encode_pulses(rc, y, N, K);
celt_normalize_residual(y, X, N, gain); celt_normalize_residual(y, X, N, gain);
celt_exp_rotation(X, N, blocks, K, spread, 0); celt_exp_rotation(X, N, blocks, K, spread, 0);
@ -429,9 +429,9 @@ static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_
the final normalised signal in the current band. */ the final normalised signal in the current band. */
static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
enum CeltSpread spread, uint32_t blocks, float gain, enum CeltSpread spread, uint32_t blocks, float gain,
void *scratch) CeltPVQ *pvq)
{ {
int *y = scratch; int *y = pvq->qcoeff;
gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
celt_normalize_residual(y, X, N, gain); celt_normalize_residual(y, X, N, gain);
@ -477,19 +477,16 @@ static void celt_stereo_ms_decouple(float *X, float *Y, int N)
} }
} }
#define QUANT_FN(name) uint32_t (*name)(CeltFrame *f, OpusRangeCoder *rc, \ static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
const int band, float *X, float *Y, \ OpusRangeCoder *rc,
int N, int b, uint32_t blocks, \ const int band, float *X,
float *lowband, int duration, \ float *Y, int N, int b,
float *lowband_out, int level, \ uint32_t blocks, float *lowband,
float gain, float *lowband_scratch, \ int duration, float *lowband_out,
int fill) int level, float gain,
float *lowband_scratch,
static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCoder *rc, const int band, int fill, int quant,
float *X, float *Y, int N, int b, uint32_t blocks, QUANT_FN(*rec))
float *lowband, int duration, float *lowband_out,
int level, float gain, float *lowband_scratch,
int fill, int quant)
{ {
int i; int i;
const uint8_t *cache; const uint8_t *cache;
@ -505,7 +502,6 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
float mid = 0, side = 0; float mid = 0, side = 0;
int longblocks = (B0 == 1); int longblocks = (B0 == 1);
uint32_t cm = 0; uint32_t cm = 0;
QUANT_FN(rec) = quant ? ff_celt_encode_band : ff_celt_decode_band;
if (N == 1) { if (N == 1) {
float *x = X; float *x = X;
@ -565,7 +561,7 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
/* Reorganize the samples in time order instead of frequency order */ /* Reorganize the samples in time order instead of frequency order */
if (B0 > 1 && (quant || lowband)) if (B0 > 1 && (quant || lowband))
celt_deinterleave_hadamard(f->scratch, quant ? X : lowband, celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
N_B >> recombine, B0 << recombine, N_B >> recombine, B0 << recombine,
longblocks); longblocks);
} }
@ -702,7 +698,7 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
sign = 1 - 2 * sign; sign = 1 - 2 * sign;
/* We use orig_fill here because we want to fold the side, but if /* We use orig_fill here because we want to fold the side, but if
itheta==16384, we'll have cleared the low bits of fill. */ itheta==16384, we'll have cleared the low bits of fill. */
cm = rec(f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration, cm = rec(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
lowband_out, level, gain, lowband_scratch, orig_fill); lowband_out, level, gain, lowband_scratch, orig_fill);
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
and there's no need to worry about mixing with the other channel. */ and there's no need to worry about mixing with the other channel. */
@ -755,7 +751,7 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
if (mbits >= sbits) { if (mbits >= sbits) {
/* In stereo mode, we do not apply a scaling to the mid /* In stereo mode, we do not apply a scaling to the mid
* because we need the normalized mid for folding later */ * because we need the normalized mid for folding later */
cm = rec(f, rc, band, X, NULL, N, mbits, blocks, lowband, cm = rec(pvq, f, rc, band, X, NULL, N, mbits, blocks, lowband,
duration, next_lowband_out1, next_level, duration, next_lowband_out1, next_level,
stereo ? 1.0f : (gain * mid), lowband_scratch, fill); stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
rebalance = mbits - (rebalance - f->remaining2); rebalance = mbits - (rebalance - f->remaining2);
@ -764,14 +760,14 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
/* For a stereo split, the high bits of fill are always zero, /* For a stereo split, the high bits of fill are always zero,
* so no folding will be done to the side. */ * so no folding will be done to the side. */
cmt = rec(f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, cmt = rec(pvq, f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2,
duration, NULL, next_level, gain * side, NULL, duration, NULL, next_level, gain * side, NULL,
fill >> blocks); fill >> blocks);
cm |= cmt << ((B0 >> 1) & (stereo - 1)); cm |= cmt << ((B0 >> 1) & (stereo - 1));
} else { } else {
/* For a stereo split, the high bits of fill are always zero, /* For a stereo split, the high bits of fill are always zero,
* so no folding will be done to the side. */ * so no folding will be done to the side. */
cm = rec(f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, cm = rec(pvq, f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2,
duration, NULL, next_level, gain * side, NULL, fill >> blocks); duration, NULL, next_level, gain * side, NULL, fill >> blocks);
cm <<= ((B0 >> 1) & (stereo - 1)); cm <<= ((B0 >> 1) & (stereo - 1));
rebalance = sbits - (rebalance - f->remaining2); rebalance = sbits - (rebalance - f->remaining2);
@ -780,7 +776,7 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
/* In stereo mode, we do not apply a scaling to the mid because /* In stereo mode, we do not apply a scaling to the mid because
* we need the normalized mid for folding later */ * we need the normalized mid for folding later */
cm |= rec(f, rc, band, X, NULL, N, mbits, blocks, lowband, duration, cm |= rec(pvq, f, rc, band, X, NULL, N, mbits, blocks, lowband, duration,
next_lowband_out1, next_level, stereo ? 1.0f : (gain * mid), next_lowband_out1, next_level, stereo ? 1.0f : (gain * mid),
lowband_scratch, fill); lowband_scratch, fill);
} }
@ -802,10 +798,10 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
/* Finally do the actual (de)quantization */ /* Finally do the actual (de)quantization */
if (quant) { if (quant) {
cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
f->spread, blocks, gain, f->scratch); f->spread, blocks, gain, pvq);
} else { } else {
cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
f->spread, blocks, gain, f->scratch); f->spread, blocks, gain, pvq);
} }
} else { } else {
/* If there's no pulse, fill the band anyway */ /* If there's no pulse, fill the band anyway */
@ -845,7 +841,7 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
/* Undo the sample reorganization going from time order to frequency order */ /* Undo the sample reorganization going from time order to frequency order */
if (B0 > 1) if (B0 > 1)
celt_interleave_hadamard(f->scratch, X, N_B >> recombine, celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
B0 << recombine, longblocks); B0 << recombine, longblocks);
/* Undo time-freq changes that we did earlier */ /* Undo time-freq changes that we did earlier */
@ -876,33 +872,28 @@ static av_always_inline uint32_t quant_band_template(CeltFrame *f, OpusRangeCode
return cm; return cm;
} }
uint32_t ff_celt_decode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
float *X, float *Y, int N, int b, uint32_t blocks, static QUANT_FN(pvq_decode_band)
float *lowband, int duration, float *lowband_out,
int level, float gain, float *lowband_scratch,
int fill)
{ {
return quant_band_template(f, rc, band, X, Y, N, b, blocks, lowband, duration, return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
lowband_out, level, gain, lowband_scratch, fill, 0); lowband_out, level, gain, lowband_scratch, fill, 0,
pvq->decode_band);
} }
uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, static QUANT_FN(pvq_encode_band)
float *X, float *Y, int N, int b, uint32_t blocks,
float *lowband, int duration, float *lowband_out,
int level, float gain, float *lowband_scratch,
int fill)
{ {
return quant_band_template(f, rc, band, X, Y, N, b, blocks, lowband, duration, return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
lowband_out, level, gain, lowband_scratch, fill, 1); lowband_out, level, gain, lowband_scratch, fill, 1,
pvq->encode_band);
} }
float ff_celt_quant_band_cost(CeltFrame *f, OpusRangeCoder *rc, int band, float *bits, static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band,
float lambda) float *bits, float lambda)
{ {
int i, b = 0; int i, b = 0;
uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
const int band_size = ff_celt_freq_range[band] << f->size; const int band_size = ff_celt_freq_range[band] << f->size;
float buf[352], lowband_scratch[176], norm1[176], norm2[176]; float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176];
float dist, cost, err_x = 0.0f, err_y = 0.0f; float dist, cost, err_x = 0.0f, err_y = 0.0f;
float *X = buf; float *X = buf;
float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size); float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
@ -921,13 +912,13 @@ float ff_celt_quant_band_cost(CeltFrame *f, OpusRangeCoder *rc, int band, float
} }
if (f->dual_stereo) { if (f->dual_stereo) {
ff_celt_encode_band(f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL, pvq->encode_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]); f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
ff_celt_encode_band(f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL, pvq->encode_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]); f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
} else { } else {
ff_celt_encode_band(f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size, pvq->encode_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]); norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
} }
@ -944,3 +935,24 @@ float ff_celt_quant_band_cost(CeltFrame *f, OpusRangeCoder *rc, int band, float
return lambda*dist*cost; return lambda*dist*cost;
} }
int av_cold ff_celt_pvq_init(CeltPVQ **pvq)
{
CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
if (!s)
return AVERROR(ENOMEM);
s->pvq_search = ppp_pvq_search_c;
s->decode_band = pvq_decode_band;
s->encode_band = pvq_encode_band;
s->band_cost = pvq_band_cost;
*pvq = s;
return 0;
}
void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
{
av_freep(pvq);
}

View File

@ -23,22 +23,28 @@
#ifndef AVCODEC_OPUS_PVQ_H #ifndef AVCODEC_OPUS_PVQ_H
#define AVCODEC_OPUS_PVQ_H #define AVCODEC_OPUS_PVQ_H
#include "opus.h"
#include "opus_celt.h" #include "opus_celt.h"
/* Decodes a band using PVQ */ #define QUANT_FN(name) uint32_t (name)(struct CeltPVQ *pvq, CeltFrame *f, \
uint32_t ff_celt_decode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, OpusRangeCoder *rc, const int band, float *X, \
float *X, float *Y, int N, int b, uint32_t blocks, float *Y, int N, int b, uint32_t blocks, \
float *lowband, int duration, float *lowband_out, int level, float *lowband, int duration, \
float gain, float *lowband_scratch, int fill); float *lowband_out, int level, float gain, \
float *lowband_scratch, int fill)
/* Encodes a band using PVQ */ struct CeltPVQ {
uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, DECLARE_ALIGNED(32, int, qcoeff )[176];
float *X, float *Y, int N, int b, uint32_t blocks, DECLARE_ALIGNED(32, float, hadamard_tmp)[176];
float *lowband, int duration, float *lowband_out, int level,
float gain, float *lowband_scratch, int fill);
float ff_celt_quant_band_cost(CeltFrame *f, OpusRangeCoder *rc, int band, float (*pvq_search)(float *X, int *y, int K, int N);
float *bits, float lambda);
QUANT_FN(*decode_band);
QUANT_FN(*encode_band);
float (*band_cost)(struct CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc,
int band, float *bits, float lambda);
};
int ff_celt_pvq_init (struct CeltPVQ **pvq);
void ff_celt_pvq_uninit(struct CeltPVQ **pvq);
#endif /* AVCODEC_OPUS_PVQ_H */ #endif /* AVCODEC_OPUS_PVQ_H */

View File

@ -55,6 +55,7 @@ typedef struct OpusEncContext {
AudioFrameQueue afq; AudioFrameQueue afq;
AVFloatDSPContext *dsp; AVFloatDSPContext *dsp;
MDCT15Context *mdct[CELT_BLOCK_NB]; MDCT15Context *mdct[CELT_BLOCK_NB];
CeltPVQ *pvq;
struct FFBufQueue bufqueue; struct FFBufQueue bufqueue;
enum OpusMode mode; enum OpusMode mode;
@ -797,15 +798,15 @@ static void celt_quant_bands(OpusRangeCoder *rc, CeltFrame *f)
} }
if (f->dual_stereo) { if (f->dual_stereo) {
cm[0] = ff_celt_encode_band(f, rc, i, X, NULL, band_size, b / 2, f->blocks, cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks,
effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
cm[1] = ff_celt_encode_band(f, rc, i, Y, NULL, band_size, b / 2, f->blocks, cm[1] = f->pvq->encode_band(f->pvq, f, rc, i, Y, NULL, band_size, b / 2, f->blocks,
effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size, effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
} else { } else {
cm[0] = ff_celt_encode_band(f, rc, i, X, Y, band_size, b, f->blocks, cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks,
effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0] | cm[1]); norm + band_offset, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
cm[1] = cm[0]; cm[1] = cm[0];
@ -883,6 +884,7 @@ static void ff_opus_psy_celt_frame_setup(OpusEncContext *s, CeltFrame *f, int in
f->avctx = s->avctx; f->avctx = s->avctx;
f->dsp = s->dsp; f->dsp = s->dsp;
f->pvq = s->pvq;
f->start_band = (s->mode == OPUS_MODE_HYBRID) ? 17 : 0; f->start_band = (s->mode == OPUS_MODE_HYBRID) ? 17 : 0;
f->end_band = ff_celt_band_end[s->bandwidth]; f->end_band = ff_celt_band_end[s->bandwidth];
f->channels = s->channels; f->channels = s->channels;
@ -1019,6 +1021,7 @@ static av_cold int opus_encode_end(AVCodecContext *avctx)
for (i = 0; i < CELT_BLOCK_NB; i++) for (i = 0; i < CELT_BLOCK_NB; i++)
ff_mdct15_uninit(&s->mdct[i]); ff_mdct15_uninit(&s->mdct[i]);
ff_celt_pvq_uninit(&s->pvq);
av_freep(&s->dsp); av_freep(&s->dsp);
av_freep(&s->frame); av_freep(&s->frame);
av_freep(&s->rc); av_freep(&s->rc);
@ -1075,6 +1078,9 @@ static av_cold int opus_encode_init(AVCodecContext *avctx)
ff_af_queue_init(avctx, &s->afq); ff_af_queue_init(avctx, &s->afq);
if ((ret = ff_celt_pvq_init(&s->pvq)) < 0)
return ret;
if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT))) if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
return AVERROR(ENOMEM); return AVERROR(ENOMEM);