1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

avfilter/vf_lut3d: allocate 3d lut dynamically

This commit is contained in:
Paul B Mahol 2019-10-24 13:37:38 +02:00
parent b78227e168
commit 9130028d87

View File

@ -65,8 +65,9 @@ typedef struct LUT3DContext {
int step; int step;
avfilter_action_func *interp; avfilter_action_func *interp;
struct rgbvec scale; struct rgbvec scale;
struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL]; struct rgbvec *lut;
int lutsize; int lutsize;
int lutsize2;
#if CONFIG_HALDCLUT_FILTER #if CONFIG_HALDCLUT_FILTER
uint8_t clut_rgba_map[4]; uint8_t clut_rgba_map[4];
int clut_step; int clut_step;
@ -113,7 +114,7 @@ static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v
static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d, static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
const struct rgbvec *s) const struct rgbvec *s)
{ {
return lut3d->lut[NEAR(s->r)][NEAR(s->g)][NEAR(s->b)]; return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)];
} }
/** /**
@ -123,17 +124,19 @@ static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d, static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
const struct rgbvec *s) const struct rgbvec *s)
{ {
const int lutsize2 = lut3d->lutsize2;
const int lutsize = lut3d->lutsize;
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]]; const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]]; const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
const struct rgbvec c00 = lerp(&c000, &c100, d.r); const struct rgbvec c00 = lerp(&c000, &c100, d.r);
const struct rgbvec c10 = lerp(&c010, &c110, d.r); const struct rgbvec c10 = lerp(&c010, &c110, d.r);
const struct rgbvec c01 = lerp(&c001, &c101, d.r); const struct rgbvec c01 = lerp(&c001, &c101, d.r);
@ -151,48 +154,50 @@ static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
const struct rgbvec *s) const struct rgbvec *s)
{ {
const int lutsize2 = lut3d->lutsize2;
const int lutsize = lut3d->lutsize;
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]]; const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]]; const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
struct rgbvec c; struct rgbvec c;
if (d.r > d.g) { if (d.r > d.g) {
if (d.g > d.b) { if (d.g > d.b) {
const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r; c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g; c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b; c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
} else if (d.r > d.b) { } else if (d.r > d.b) {
const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r; c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g; c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b; c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
} else { } else {
const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r; c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g; c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b; c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
} }
} else { } else {
if (d.b > d.g) { if (d.b > d.g) {
const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r; c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g; c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b; c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
} else if (d.b > d.r) { } else if (d.b > d.r) {
const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r; c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g; c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b; c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
} else { } else {
const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r; c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g; c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b; c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
@ -346,30 +351,50 @@ static int skip_line(const char *p)
} \ } \
} while (loop_cond) } while (loop_cond)
static int allocate_3dlut(AVFilterContext *ctx, int lutsize)
{
LUT3DContext *lut3d = ctx->priv;
if (lutsize < 2 || lutsize > MAX_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
return AVERROR(EINVAL);
}
av_freep(&lut3d->lut);
lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut));
if (!lut3d->lut)
return AVERROR(ENOMEM);
lut3d->lutsize = lutsize;
lut3d->lutsize2 = lutsize * lutsize;
return 0;
}
/* Basically r g and b float values on each line, with a facultative 3DLUTSIZE /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
* directive; seems to be generated by Davinci */ * directive; seems to be generated by Davinci */
static int parse_dat(AVFilterContext *ctx, FILE *f) static int parse_dat(AVFilterContext *ctx, FILE *f)
{ {
LUT3DContext *lut3d = ctx->priv; LUT3DContext *lut3d = ctx->priv;
char line[MAX_LINE_SIZE]; char line[MAX_LINE_SIZE];
int i, j, k, size; int ret, i, j, k, size, size2;
lut3d->lutsize = size = 33; lut3d->lutsize = size = 33;
size2 = size * size;
NEXT_LINE(skip_line(line)); NEXT_LINE(skip_line(line));
if (!strncmp(line, "3DLUTSIZE ", 10)) { if (!strncmp(line, "3DLUTSIZE ", 10)) {
size = strtol(line + 10, NULL, 0); size = strtol(line + 10, NULL, 0);
if (size < 2 || size > MAX_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
return AVERROR(EINVAL);
}
lut3d->lutsize = size;
NEXT_LINE(skip_line(line)); NEXT_LINE(skip_line(line));
} }
ret = allocate_3dlut(ctx, size);
if (ret < 0)
return ret;
for (k = 0; k < size; k++) { for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) { for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k][j][i]; struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
if (k != 0 || j != 0 || i != 0) if (k != 0 || j != 0 || i != 0)
NEXT_LINE(skip_line(line)); NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
@ -390,18 +415,18 @@ static int parse_cube(AVFilterContext *ctx, FILE *f)
while (fgets(line, sizeof(line), f)) { while (fgets(line, sizeof(line), f)) {
if (!strncmp(line, "LUT_3D_SIZE", 11)) { if (!strncmp(line, "LUT_3D_SIZE", 11)) {
int i, j, k; int ret, i, j, k;
const int size = strtol(line + 12, NULL, 0); const int size = strtol(line + 12, NULL, 0);
const int size2 = size * size;
ret = allocate_3dlut(ctx, size);
if (ret < 0)
return ret;
if (size < 2 || size > MAX_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
return AVERROR(EINVAL);
}
lut3d->lutsize = size;
for (k = 0; k < size; k++) { for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) { for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[i][j][k]; struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
do { do {
try_again: try_again:
@ -442,17 +467,23 @@ static int parse_3dl(AVFilterContext *ctx, FILE *f)
{ {
char line[MAX_LINE_SIZE]; char line[MAX_LINE_SIZE];
LUT3DContext *lut3d = ctx->priv; LUT3DContext *lut3d = ctx->priv;
int i, j, k; int ret, i, j, k;
const int size = 17; const int size = 17;
const int size2 = 17 * 17;
const float scale = 16*16*16; const float scale = 16*16*16;
lut3d->lutsize = size; lut3d->lutsize = size;
ret = allocate_3dlut(ctx, size);
if (ret < 0)
return ret;
NEXT_LINE(skip_line(line)); NEXT_LINE(skip_line(line));
for (k = 0; k < size; k++) { for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) { for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
int r, g, b; int r, g, b;
struct rgbvec *vec = &lut3d->lut[k][j][i]; struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
NEXT_LINE(skip_line(line)); NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3) if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
@ -471,7 +502,7 @@ static int parse_m3d(AVFilterContext *ctx, FILE *f)
{ {
LUT3DContext *lut3d = ctx->priv; LUT3DContext *lut3d = ctx->priv;
float scale; float scale;
int i, j, k, size, in = -1, out = -1; int ret, i, j, k, size, size2, in = -1, out = -1;
char line[MAX_LINE_SIZE]; char line[MAX_LINE_SIZE];
uint8_t rgb_map[3] = {0, 1, 2}; uint8_t rgb_map[3] = {0, 1, 2};
@ -510,12 +541,18 @@ static int parse_m3d(AVFilterContext *ctx, FILE *f)
} }
for (size = 1; size*size*size < in; size++); for (size = 1; size*size*size < in; size++);
lut3d->lutsize = size; lut3d->lutsize = size;
size2 = size * size;
ret = allocate_3dlut(ctx, size);
if (ret < 0)
return ret;
scale = 1. / (out - 1); scale = 1. / (out - 1);
for (k = 0; k < size; k++) { for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) { for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k][j][i]; struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
float val[3]; float val[3];
NEXT_LINE(0); NEXT_LINE(0);
@ -538,7 +575,7 @@ static int parse_cinespace(AVFilterContext *ctx, FILE *f)
float in_max[3] = {1.0, 1.0, 1.0}; float in_max[3] = {1.0, 1.0, 1.0};
float out_min[3] = {0.0, 0.0, 0.0}; float out_min[3] = {0.0, 0.0, 0.0};
float out_max[3] = {1.0, 1.0, 1.0}; float out_max[3] = {1.0, 1.0, 1.0};
int inside_metadata = 0, size; int ret, inside_metadata = 0, size, size2;
NEXT_LINE(skip_line(line)); NEXT_LINE(skip_line(line));
if (strncmp(line, "CSPLUTV100", 10)) { if (strncmp(line, "CSPLUTV100", 10)) {
@ -591,17 +628,16 @@ static int parse_cinespace(AVFilterContext *ctx, FILE *f)
} }
size = size_r; size = size_r;
if (size < 2 || size > MAX_LEVEL) { size2 = size * size;
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
return AVERROR(EINVAL);
}
lut3d->lutsize = size; ret = allocate_3dlut(ctx, size);
if (ret < 0)
return ret;
for (int k = 0; k < size; k++) { for (int k = 0; k < size; k++) {
for (int j = 0; j < size; j++) { for (int j = 0; j < size; j++) {
for (int i = 0; i < size; i++) { for (int i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[i][j][k]; struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
if (k != 0 || j != 0 || i != 0) if (k != 0 || j != 0 || i != 0)
NEXT_LINE(skip_line(line)); NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
@ -624,22 +660,29 @@ static int parse_cinespace(AVFilterContext *ctx, FILE *f)
return 0; return 0;
} }
static void set_identity_matrix(LUT3DContext *lut3d, int size) static int set_identity_matrix(AVFilterContext *ctx, int size)
{ {
int i, j, k; LUT3DContext *lut3d = ctx->priv;
int ret, i, j, k;
const int size2 = size * size;
const float c = 1. / (size - 1); const float c = 1. / (size - 1);
lut3d->lutsize = size; ret = allocate_3dlut(ctx, size);
if (ret < 0)
return ret;
for (k = 0; k < size; k++) { for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) { for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k][j][i]; struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
vec->r = k * c; vec->r = k * c;
vec->g = j * c; vec->g = j * c;
vec->b = i * c; vec->b = i * c;
} }
} }
} }
return 0;
} }
static int query_formats(AVFilterContext *ctx) static int query_formats(AVFilterContext *ctx)
@ -780,8 +823,7 @@ static av_cold int lut3d_init(AVFilterContext *ctx)
lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f; lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
if (!lut3d->file) { if (!lut3d->file) {
set_identity_matrix(lut3d, 32); return set_identity_matrix(ctx, 32);
return 0;
} }
f = fopen(lut3d->file, "r"); f = fopen(lut3d->file, "r");
@ -824,6 +866,13 @@ end:
return ret; return ret;
} }
static av_cold void lut3d_uninit(AVFilterContext *ctx)
{
LUT3DContext *lut3d = ctx->priv;
av_freep(&lut3d->lut);
}
static const AVFilterPad lut3d_inputs[] = { static const AVFilterPad lut3d_inputs[] = {
{ {
.name = "default", .name = "default",
@ -847,6 +896,7 @@ AVFilter ff_vf_lut3d = {
.description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."), .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
.priv_size = sizeof(LUT3DContext), .priv_size = sizeof(LUT3DContext),
.init = lut3d_init, .init = lut3d_init,
.uninit = lut3d_uninit,
.query_formats = query_formats, .query_formats = query_formats,
.inputs = lut3d_inputs, .inputs = lut3d_inputs,
.outputs = lut3d_outputs, .outputs = lut3d_outputs,
@ -865,6 +915,7 @@ static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
const int step = lut3d->clut_step; const int step = lut3d->clut_step;
const uint8_t *rgba_map = lut3d->clut_rgba_map; const uint8_t *rgba_map = lut3d->clut_rgba_map;
const int level = lut3d->lutsize; const int level = lut3d->lutsize;
const int level2 = lut3d->lutsize2;
#define LOAD_CLUT(nbits) do { \ #define LOAD_CLUT(nbits) do { \
int i, j, k, x = 0, y = 0; \ int i, j, k, x = 0, y = 0; \
@ -874,7 +925,7 @@ static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
for (i = 0; i < level; i++) { \ for (i = 0; i < level; i++) { \
const uint##nbits##_t *src = (const uint##nbits##_t *) \ const uint##nbits##_t *src = (const uint##nbits##_t *) \
(data + y*linesize + x*step); \ (data + y*linesize + x*step); \
struct rgbvec *vec = &lut3d->lut[i][j][k]; \ struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \ vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \ vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \ vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
@ -903,6 +954,7 @@ static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
const int rlinesize = frame->linesize[2]; const int rlinesize = frame->linesize[2];
const int w = lut3d->clut_width; const int w = lut3d->clut_width;
const int level = lut3d->lutsize; const int level = lut3d->lutsize;
const int level2 = lut3d->lutsize2;
#define LOAD_CLUT_PLANAR(nbits, depth) do { \ #define LOAD_CLUT_PLANAR(nbits, depth) do { \
int i, j, k, x = 0, y = 0; \ int i, j, k, x = 0, y = 0; \
@ -916,7 +968,7 @@ static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
(datab + y*blinesize); \ (datab + y*blinesize); \
const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \ const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
(datar + y*rlinesize); \ (datar + y*rlinesize); \
struct rgbvec *vec = &lut3d->lut[i][j][k]; \ struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \ vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \ vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \ vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
@ -1001,9 +1053,8 @@ static int config_clut(AVFilterLink *inlink)
max_clut_level, max_clut_size, max_clut_size); max_clut_level, max_clut_size, max_clut_size);
return AVERROR(EINVAL); return AVERROR(EINVAL);
} }
lut3d->lutsize = level;
return 0; return allocate_3dlut(ctx, level);
} }
static int update_apply_clut(FFFrameSync *fs) static int update_apply_clut(FFFrameSync *fs)
@ -1039,6 +1090,7 @@ static av_cold void haldclut_uninit(AVFilterContext *ctx)
{ {
LUT3DContext *lut3d = ctx->priv; LUT3DContext *lut3d = ctx->priv;
ff_framesync_uninit(&lut3d->fs); ff_framesync_uninit(&lut3d->fs);
av_freep(&lut3d->lut);
} }
static const AVOption haldclut_options[] = { static const AVOption haldclut_options[] = {