mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-08 13:22:53 +02:00
avfilter: add xcorrelate video filter
This commit is contained in:
parent
32eaf4069e
commit
933765aa0e
@ -27,6 +27,7 @@ version <next>:
|
||||
- asdr audio filter
|
||||
- speex decoder
|
||||
- limitdiff video filter
|
||||
- xcorrelate video filter
|
||||
|
||||
|
||||
version 4.4:
|
||||
|
@ -22563,6 +22563,24 @@ Set the scaling dimension: @code{2} for @code{2xBR}, @code{3} for
|
||||
Default is @code{3}.
|
||||
@end table
|
||||
|
||||
@section xcorrelate
|
||||
Apply normalized cross-correlation between first and second input video stream.
|
||||
|
||||
Second input video stream dimensions must be lower than first input video stream.
|
||||
|
||||
The filter accepts the following options:
|
||||
|
||||
@table @option
|
||||
@item planes
|
||||
Set which planes to process.
|
||||
|
||||
@item secondary
|
||||
Set which secondary video frames will be processed from second input video stream,
|
||||
can be @var{first} or @var{all}. Default is @var{all}.
|
||||
@end table
|
||||
|
||||
The @code{xcorrelate} filter also supports the @ref{framesync} options.
|
||||
|
||||
@section xfade
|
||||
|
||||
Apply cross fade from one input video stream to another input video stream.
|
||||
|
@ -500,6 +500,7 @@ OBJS-$(CONFIG_W3FDIF_FILTER) += vf_w3fdif.o
|
||||
OBJS-$(CONFIG_WAVEFORM_FILTER) += vf_waveform.o
|
||||
OBJS-$(CONFIG_WEAVE_FILTER) += vf_weave.o
|
||||
OBJS-$(CONFIG_XBR_FILTER) += vf_xbr.o
|
||||
OBJS-$(CONFIG_XCORRELATE_FILTER) += vf_convolve.o framesync.o
|
||||
OBJS-$(CONFIG_XFADE_FILTER) += vf_xfade.o
|
||||
OBJS-$(CONFIG_XFADE_OPENCL_FILTER) += vf_xfade_opencl.o opencl.o opencl/xfade.o
|
||||
OBJS-$(CONFIG_XMEDIAN_FILTER) += vf_xmedian.o framesync.o
|
||||
|
@ -477,6 +477,7 @@ extern const AVFilter ff_vf_w3fdif;
|
||||
extern const AVFilter ff_vf_waveform;
|
||||
extern const AVFilter ff_vf_weave;
|
||||
extern const AVFilter ff_vf_xbr;
|
||||
extern const AVFilter ff_vf_xcorrelate;
|
||||
extern const AVFilter ff_vf_xfade;
|
||||
extern const AVFilter ff_vf_xfade_opencl;
|
||||
extern const AVFilter ff_vf_xmedian;
|
||||
|
@ -30,7 +30,7 @@
|
||||
#include "libavutil/version.h"
|
||||
|
||||
#define LIBAVFILTER_VERSION_MAJOR 8
|
||||
#define LIBAVFILTER_VERSION_MINOR 13
|
||||
#define LIBAVFILTER_VERSION_MINOR 14
|
||||
#define LIBAVFILTER_VERSION_MICRO 100
|
||||
|
||||
|
||||
|
@ -47,6 +47,12 @@ typedef struct ConvolveContext {
|
||||
int planewidth[4];
|
||||
int planeheight[4];
|
||||
|
||||
int primarywidth[4];
|
||||
int primaryheight[4];
|
||||
|
||||
int secondarywidth[4];
|
||||
int secondaryheight[4];
|
||||
|
||||
AVComplexFloat *fft_hdata_in[4];
|
||||
AVComplexFloat *fft_vdata_in[4];
|
||||
AVComplexFloat *fft_hdata_out[4];
|
||||
@ -63,6 +69,13 @@ typedef struct ConvolveContext {
|
||||
int nb_planes;
|
||||
int got_impulse[4];
|
||||
|
||||
void (*get_input)(struct ConvolveContext *s, AVComplexFloat *fft_hdata,
|
||||
AVFrame *in, int w, int h, int n, int plane, float scale);
|
||||
|
||||
void (*get_output)(struct ConvolveContext *s, AVComplexFloat *input, AVFrame *out,
|
||||
int w, int h, int n, int plane, float scale);
|
||||
void (*prepare_impulse)(AVFilterContext *ctx, AVFrame *impulsepic, int plane);
|
||||
|
||||
int (*filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
|
||||
} ConvolveContext;
|
||||
|
||||
@ -99,21 +112,22 @@ static const enum AVPixelFormat pixel_fmts_fftfilt[] = {
|
||||
AV_PIX_FMT_NONE
|
||||
};
|
||||
|
||||
static int config_input_main(AVFilterLink *inlink)
|
||||
static int config_input(AVFilterLink *inlink)
|
||||
{
|
||||
ConvolveContext *s = inlink->dst->priv;
|
||||
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
|
||||
int i;
|
||||
const int w = inlink->w;
|
||||
const int h = inlink->h;
|
||||
|
||||
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
|
||||
s->planewidth[0] = s->planewidth[3] = inlink->w;
|
||||
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
|
||||
s->planeheight[0] = s->planeheight[3] = inlink->h;
|
||||
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(w, desc->log2_chroma_w);
|
||||
s->planewidth[0] = s->planewidth[3] = w;
|
||||
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(h, desc->log2_chroma_h);
|
||||
s->planeheight[0] = s->planeheight[3] = h;
|
||||
|
||||
s->nb_planes = desc->nb_components;
|
||||
s->depth = desc->comp[0].depth;
|
||||
|
||||
for (i = 0; i < s->nb_planes; i++) {
|
||||
for (int i = 0; i < s->nb_planes; i++) {
|
||||
int w = s->planewidth[i];
|
||||
int h = s->planeheight[i];
|
||||
int n = FFMAX(w, h);
|
||||
@ -186,6 +200,98 @@ static int fft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_job
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define SQR(x) ((x) * (x))
|
||||
|
||||
static void get_zeropadded_input(ConvolveContext *s,
|
||||
AVComplexFloat *fft_hdata,
|
||||
AVFrame *in, int w, int h,
|
||||
int n, int plane, float scale)
|
||||
{
|
||||
float sum = 0.f;
|
||||
float mean, dev;
|
||||
int y, x;
|
||||
|
||||
if (s->depth == 8) {
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
|
||||
|
||||
for (x = 0; x < w; x++)
|
||||
sum += src[x];
|
||||
}
|
||||
|
||||
mean = sum / (w * h);
|
||||
sum = 0.f;
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
|
||||
|
||||
for (x = 0; x < w; x++)
|
||||
sum += SQR(src[x] - mean);
|
||||
}
|
||||
|
||||
dev = sqrtf(sum / (w * h));
|
||||
scale /= dev;
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
|
||||
|
||||
for (x = 0; x < w; x++) {
|
||||
fft_hdata[y * n + x].re = (src[x] - mean) * scale;
|
||||
fft_hdata[y * n + x].im = 0;
|
||||
}
|
||||
|
||||
for (x = w; x < n; x++) {
|
||||
fft_hdata[y * n + x].re = 0;
|
||||
fft_hdata[y * n + x].im = 0;
|
||||
}
|
||||
}
|
||||
|
||||
for (y = h; y < n; y++) {
|
||||
for (x = 0; x < n; x++) {
|
||||
fft_hdata[y * n + x].re = 0;
|
||||
fft_hdata[y * n + x].im = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
|
||||
|
||||
for (x = 0; x < w; x++)
|
||||
sum += src[x];
|
||||
}
|
||||
|
||||
mean = sum / (w * h);
|
||||
sum = 0.f;
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
|
||||
|
||||
for (x = 0; x < w; x++)
|
||||
sum += SQR(src[x] - mean);
|
||||
}
|
||||
|
||||
dev = sqrtf(sum / (w * h));
|
||||
scale /= dev;
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
|
||||
|
||||
for (x = 0; x < w; x++) {
|
||||
fft_hdata[y * n + x].re = (src[x] - mean) * scale;
|
||||
fft_hdata[y * n + x].im = 0;
|
||||
}
|
||||
|
||||
for (x = w; x < n; x++) {
|
||||
fft_hdata[y * n + x].re = 0;
|
||||
fft_hdata[y * n + x].im = 0;
|
||||
}
|
||||
}
|
||||
|
||||
for (y = h; y < n; y++) {
|
||||
for (x = 0; x < n; x++) {
|
||||
fft_hdata[y * n + x].re = 0;
|
||||
fft_hdata[y * n + x].im = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void get_input(ConvolveContext *s, AVComplexFloat *fft_hdata,
|
||||
AVFrame *in, int w, int h, int n, int plane, float scale)
|
||||
{
|
||||
@ -330,6 +436,27 @@ static int ifft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jo
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void get_xoutput(ConvolveContext *s, AVComplexFloat *input, AVFrame *out,
|
||||
int w, int h, int n, int plane, float scale)
|
||||
{
|
||||
const int imax = (1 << s->depth) - 1;
|
||||
|
||||
scale *= imax * 16;
|
||||
if (s->depth == 8) {
|
||||
for (int y = 0; y < h; y++) {
|
||||
uint8_t *dst = out->data[plane] + y * out->linesize[plane];
|
||||
for (int x = 0; x < w; x++)
|
||||
dst[x] = av_clip_uint8(input[y * n + x].re * scale);
|
||||
}
|
||||
} else {
|
||||
for (int y = 0; y < h; y++) {
|
||||
uint16_t *dst = (uint16_t *)(out->data[plane] + y * out->linesize[plane]);
|
||||
for (int x = 0; x < w; x++)
|
||||
dst[x] = av_clip(input[y * n + x].re * scale, 0, imax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void get_output(ConvolveContext *s, AVComplexFloat *input, AVFrame *out,
|
||||
int w, int h, int n, int plane, float scale)
|
||||
{
|
||||
@ -414,6 +541,35 @@ static int complex_multiply(AVFilterContext *ctx, void *arg, int jobnr, int nb_j
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int complex_xcorrelate(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
|
||||
{
|
||||
ThreadData *td = arg;
|
||||
AVComplexFloat *input = td->hdata_in;
|
||||
AVComplexFloat *filter = td->vdata_in;
|
||||
const int n = td->n;
|
||||
const float scale = 1.f / (n * n);
|
||||
int start = (n * jobnr) / nb_jobs;
|
||||
int end = (n * (jobnr+1)) / nb_jobs;
|
||||
|
||||
for (int y = start; y < end; y++) {
|
||||
int yn = y * n;
|
||||
|
||||
for (int x = 0; x < n; x++) {
|
||||
float re, im, ire, iim;
|
||||
|
||||
re = input[yn + x].re;
|
||||
im = input[yn + x].im;
|
||||
ire = filter[yn + x].re * scale;
|
||||
iim = -filter[yn + x].im * scale;
|
||||
|
||||
input[yn + x].re = ire * re - iim * im;
|
||||
input[yn + x].im = iim * re + ire * im;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int complex_divide(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
|
||||
{
|
||||
ConvolveContext *s = ctx->priv;
|
||||
@ -446,13 +602,82 @@ static int complex_divide(AVFilterContext *ctx, void *arg, int jobnr, int nb_job
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void prepare_impulse(AVFilterContext *ctx, AVFrame *impulsepic, int plane)
|
||||
{
|
||||
ConvolveContext *s = ctx->priv;
|
||||
const int n = s->fft_len[plane];
|
||||
const int w = s->secondarywidth[plane];
|
||||
const int h = s->secondaryheight[plane];
|
||||
ThreadData td;
|
||||
float total = 0;
|
||||
|
||||
if (s->depth == 8) {
|
||||
for (int y = 0; y < h; y++) {
|
||||
const uint8_t *src = (const uint8_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
|
||||
for (int x = 0; x < w; x++) {
|
||||
total += src[x];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int y = 0; y < h; y++) {
|
||||
const uint16_t *src = (const uint16_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
|
||||
for (int x = 0; x < w; x++) {
|
||||
total += src[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
total = FFMAX(1, total);
|
||||
|
||||
s->get_input(s, s->fft_hdata_impulse_in[plane], impulsepic, w, h, n, plane, 1.f / total);
|
||||
|
||||
td.n = n;
|
||||
td.plane = plane;
|
||||
td.hdata_in = s->fft_hdata_impulse_in[plane];
|
||||
td.vdata_in = s->fft_vdata_impulse_in[plane];
|
||||
td.hdata_out = s->fft_hdata_impulse_out[plane];
|
||||
td.vdata_out = s->fft_vdata_impulse_out[plane];
|
||||
|
||||
ff_filter_execute(ctx, fft_horizontal, &td, NULL,
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
ff_filter_execute(ctx, fft_vertical, &td, NULL,
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
|
||||
s->got_impulse[plane] = 1;
|
||||
}
|
||||
|
||||
static void prepare_secondary(AVFilterContext *ctx, AVFrame *secondary, int plane)
|
||||
{
|
||||
ConvolveContext *s = ctx->priv;
|
||||
const int n = s->fft_len[plane];
|
||||
ThreadData td;
|
||||
|
||||
s->get_input(s, s->fft_hdata_impulse_in[plane], secondary,
|
||||
s->secondarywidth[plane],
|
||||
s->secondaryheight[plane],
|
||||
n, plane, 1.f);
|
||||
|
||||
td.n = n;
|
||||
td.plane = plane;
|
||||
td.hdata_in = s->fft_hdata_impulse_in[plane];
|
||||
td.vdata_in = s->fft_vdata_impulse_in[plane];
|
||||
td.hdata_out = s->fft_hdata_impulse_out[plane];
|
||||
td.vdata_out = s->fft_vdata_impulse_out[plane];
|
||||
|
||||
ff_filter_execute(ctx, fft_horizontal, &td, NULL,
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
ff_filter_execute(ctx, fft_vertical, &td, NULL,
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
|
||||
s->got_impulse[plane] = 1;
|
||||
}
|
||||
|
||||
static int do_convolve(FFFrameSync *fs)
|
||||
{
|
||||
AVFilterContext *ctx = fs->parent;
|
||||
AVFilterLink *outlink = ctx->outputs[0];
|
||||
ConvolveContext *s = ctx->priv;
|
||||
AVFrame *mainpic = NULL, *impulsepic = NULL;
|
||||
int ret, y, x, plane;
|
||||
int ret, plane;
|
||||
|
||||
ret = ff_framesync_dualinput_get(fs, &mainpic, &impulsepic);
|
||||
if (ret < 0)
|
||||
@ -464,9 +689,10 @@ static int do_convolve(FFFrameSync *fs)
|
||||
AVComplexFloat *filter = s->fft_vdata_impulse_out[plane];
|
||||
AVComplexFloat *input = s->fft_vdata_out[plane];
|
||||
const int n = s->fft_len[plane];
|
||||
const int w = s->planewidth[plane];
|
||||
const int h = s->planeheight[plane];
|
||||
float total = 0;
|
||||
const int w = s->primarywidth[plane];
|
||||
const int h = s->primaryheight[plane];
|
||||
const int ow = s->planewidth[plane];
|
||||
const int oh = s->planeheight[plane];
|
||||
ThreadData td;
|
||||
|
||||
if (!(s->planes & (1 << plane))) {
|
||||
@ -474,7 +700,7 @@ static int do_convolve(FFFrameSync *fs)
|
||||
}
|
||||
|
||||
td.plane = plane, td.n = n;
|
||||
get_input(s, s->fft_hdata_in[plane], mainpic, w, h, n, plane, 1.f);
|
||||
s->get_input(s, s->fft_hdata_in[plane], mainpic, w, h, n, plane, 1.f);
|
||||
|
||||
td.hdata_in = s->fft_hdata_in[plane];
|
||||
td.vdata_in = s->fft_vdata_in[plane];
|
||||
@ -487,36 +713,7 @@ static int do_convolve(FFFrameSync *fs)
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
|
||||
if ((!s->impulse && !s->got_impulse[plane]) || s->impulse) {
|
||||
if (s->depth == 8) {
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint8_t *src = (const uint8_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
|
||||
for (x = 0; x < w; x++) {
|
||||
total += src[x];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (y = 0; y < h; y++) {
|
||||
const uint16_t *src = (const uint16_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
|
||||
for (x = 0; x < w; x++) {
|
||||
total += src[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
total = FFMAX(1, total);
|
||||
|
||||
get_input(s, s->fft_hdata_impulse_in[plane], impulsepic, w, h, n, plane, 1.f / total);
|
||||
|
||||
td.hdata_in = s->fft_hdata_impulse_in[plane];
|
||||
td.vdata_in = s->fft_vdata_impulse_in[plane];
|
||||
td.hdata_out = s->fft_hdata_impulse_out[plane];
|
||||
td.vdata_out = s->fft_vdata_impulse_out[plane];
|
||||
|
||||
ff_filter_execute(ctx, fft_horizontal, &td, NULL,
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
ff_filter_execute(ctx, fft_vertical, &td, NULL,
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
|
||||
s->got_impulse[plane] = 1;
|
||||
s->prepare_impulse(ctx, impulsepic, plane);
|
||||
}
|
||||
|
||||
td.hdata_in = input;
|
||||
@ -539,7 +736,7 @@ static int do_convolve(FFFrameSync *fs)
|
||||
ff_filter_execute(ctx, ifft_horizontal, &td, NULL,
|
||||
FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx)));
|
||||
|
||||
get_output(s, s->fft_hdata_out[plane], mainpic, w, h, n, plane, 1.f / (n * n));
|
||||
s->get_output(s, s->fft_hdata_out[plane], mainpic, ow, oh, n, plane, 1.f / (n * n));
|
||||
}
|
||||
|
||||
return ff_filter_frame(outlink, mainpic);
|
||||
@ -547,11 +744,23 @@ static int do_convolve(FFFrameSync *fs)
|
||||
|
||||
static int config_output(AVFilterLink *outlink)
|
||||
{
|
||||
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format);
|
||||
AVFilterContext *ctx = outlink->src;
|
||||
ConvolveContext *s = ctx->priv;
|
||||
AVFilterLink *mainlink = ctx->inputs[0];
|
||||
AVFilterLink *secondlink = ctx->inputs[1];
|
||||
int ret, i, j;
|
||||
|
||||
s->primarywidth[1] = s->primarywidth[2] = AV_CEIL_RSHIFT(mainlink->w, desc->log2_chroma_w);
|
||||
s->primarywidth[0] = s->primarywidth[3] = mainlink->w;
|
||||
s->primaryheight[1] = s->primaryheight[2] = AV_CEIL_RSHIFT(mainlink->h, desc->log2_chroma_h);
|
||||
s->primaryheight[0] = s->primaryheight[3] = mainlink->h;
|
||||
|
||||
s->secondarywidth[1] = s->secondarywidth[2] = AV_CEIL_RSHIFT(secondlink->w, desc->log2_chroma_w);
|
||||
s->secondarywidth[0] = s->secondarywidth[3] = secondlink->w;
|
||||
s->secondaryheight[1] = s->secondaryheight[2] = AV_CEIL_RSHIFT(secondlink->h, desc->log2_chroma_h);
|
||||
s->secondaryheight[0] = s->secondaryheight[3] = secondlink->h;
|
||||
|
||||
s->fs.on_event = do_convolve;
|
||||
ret = ff_framesync_init_dualinput(&s->fs, ctx);
|
||||
if (ret < 0)
|
||||
@ -593,8 +802,19 @@ static av_cold int init(AVFilterContext *ctx)
|
||||
|
||||
if (!strcmp(ctx->filter->name, "convolve")) {
|
||||
s->filter = complex_multiply;
|
||||
s->prepare_impulse = prepare_impulse;
|
||||
s->get_input = get_input;
|
||||
s->get_output = get_output;
|
||||
} else if (!strcmp(ctx->filter->name, "xcorrelate")) {
|
||||
s->filter = complex_xcorrelate;
|
||||
s->prepare_impulse = prepare_secondary;
|
||||
s->get_input = get_zeropadded_input;
|
||||
s->get_output = get_xoutput;
|
||||
} else if (!strcmp(ctx->filter->name, "deconvolve")) {
|
||||
s->filter = complex_divide;
|
||||
s->prepare_impulse = prepare_impulse;
|
||||
s->get_input = get_input;
|
||||
s->get_output = get_output;
|
||||
} else {
|
||||
return AVERROR_BUG;
|
||||
}
|
||||
@ -630,7 +850,7 @@ static const AVFilterPad convolve_inputs[] = {
|
||||
{
|
||||
.name = "main",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
.config_props = config_input_main,
|
||||
.config_props = config_input,
|
||||
},{
|
||||
.name = "impulse",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
@ -698,3 +918,65 @@ const AVFilter ff_vf_deconvolve = {
|
||||
};
|
||||
|
||||
#endif /* CONFIG_DECONVOLVE_FILTER */
|
||||
|
||||
#if CONFIG_XCORRELATE_FILTER
|
||||
|
||||
static const AVOption xcorrelate_options[] = {
|
||||
{ "planes", "set planes to cross-correlate", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
|
||||
{ "secondary", "when to process secondary frame", OFFSET(impulse), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "impulse" },
|
||||
{ "first", "process only first secondary frame, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "impulse" },
|
||||
{ "all", "process all secondary frames", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "impulse" },
|
||||
{ NULL },
|
||||
};
|
||||
|
||||
FRAMESYNC_DEFINE_PURE_CLASS(xcorrelate, "xcorrelate", convolve, xcorrelate_options);
|
||||
|
||||
static int config_input_secondary(AVFilterLink *inlink)
|
||||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
|
||||
if (ctx->inputs[0]->w <= ctx->inputs[1]->w ||
|
||||
ctx->inputs[0]->h <= ctx->inputs[1]->h) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Width and height of second input videos must be less than first input.\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const AVFilterPad xcorrelate_inputs[] = {
|
||||
{
|
||||
.name = "primary",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
.config_props = config_input,
|
||||
},{
|
||||
.name = "secondary",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
.config_props = config_input_secondary,
|
||||
},
|
||||
};
|
||||
|
||||
static const AVFilterPad xcorrelate_outputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
.config_props = config_output,
|
||||
},
|
||||
};
|
||||
|
||||
const AVFilter ff_vf_xcorrelate = {
|
||||
.name = "xcorrelate",
|
||||
.description = NULL_IF_CONFIG_SMALL("Cross-correlate first video stream with second video stream."),
|
||||
.preinit = convolve_framesync_preinit,
|
||||
.init = init,
|
||||
.uninit = uninit,
|
||||
.activate = activate,
|
||||
.priv_size = sizeof(ConvolveContext),
|
||||
.priv_class = &xcorrelate_class,
|
||||
FILTER_INPUTS(xcorrelate_inputs),
|
||||
FILTER_OUTPUTS(xcorrelate_outputs),
|
||||
FILTER_PIXFMTS_ARRAY(pixel_fmts_fftfilt),
|
||||
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
|
||||
};
|
||||
|
||||
#endif /* CONFIG_XCORRELATE_FILTER */
|
||||
|
Loading…
Reference in New Issue
Block a user