1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

avfilter/vf_unsharp: enable slice threading

benchmarking with a simple command:
ffmpeg -i 1080p.mp4 -vf unsharp=la=3:ca=3 -an -f null /dev/null
with the patch, the fps increase from 50 to 120 on my local machine (i7-6770HQ).

Signed-off-by: Ruiling Song <ruiling.song@intel.com>
This commit is contained in:
Ruiling Song 2019-05-07 09:46:33 +08:00
parent bbad0bc5ff
commit 94ceeba9f9
2 changed files with 82 additions and 26 deletions

View File

@ -37,7 +37,8 @@ typedef struct UnsharpFilterParam {
int steps_y; ///< vertical step count
int scalebits; ///< bits to shift pixel
int32_t halfscale; ///< amount to add to pixel
uint32_t *sc[MAX_MATRIX_SIZE - 1]; ///< finite state machine storage
uint32_t *sr; ///< finite state machine storage within a row
uint32_t **sc; ///< finite state machine storage across rows
} UnsharpFilterParam;
typedef struct UnsharpContext {
@ -47,6 +48,7 @@ typedef struct UnsharpContext {
UnsharpFilterParam luma; ///< luma parameters (width, height, amount)
UnsharpFilterParam chroma; ///< chroma parameters (width, height, amount)
int hsub, vsub;
int nb_threads;
int opencl;
int (* apply_unsharp)(AVFilterContext *ctx, AVFrame *in, AVFrame *out);
} UnsharpContext;

View File

@ -47,15 +47,22 @@
#include "libavutil/pixdesc.h"
#include "unsharp.h"
static void apply_unsharp( uint8_t *dst, int dst_stride,
const uint8_t *src, int src_stride,
int width, int height, UnsharpFilterParam *fp)
{
uint32_t **sc = fp->sc;
uint32_t sr[MAX_MATRIX_SIZE - 1], tmp1, tmp2;
typedef struct TheadData {
UnsharpFilterParam *fp;
uint8_t *dst;
const uint8_t *src;
int dst_stride;
int src_stride;
int width;
int height;
} ThreadData;
int32_t res;
int x, y, z;
static int unsharp_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
UnsharpFilterParam *fp = td->fp;
uint32_t **sc = fp->sc;
uint32_t *sr = fp->sr;
const uint8_t *src2 = NULL; //silence a warning
const int amount = fp->amount;
const int steps_x = fp->steps_x;
@ -63,30 +70,54 @@ static void apply_unsharp( uint8_t *dst, int dst_stride,
const int scalebits = fp->scalebits;
const int32_t halfscale = fp->halfscale;
uint8_t *dst = td->dst;
const uint8_t *src = td->src;
const int dst_stride = td->dst_stride;
const int src_stride = td->src_stride;
const int width = td->width;
const int height = td->height;
const int sc_offset = jobnr * 2 * steps_y;
const int sr_offset = jobnr * (MAX_MATRIX_SIZE - 1);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
int32_t res;
int x, y, z;
uint32_t tmp1, tmp2;
if (!amount) {
av_image_copy_plane(dst, dst_stride, src, src_stride, width, height);
return;
av_image_copy_plane(dst + slice_start * dst_stride, dst_stride,
src + slice_start * src_stride, src_stride,
width, slice_end - slice_start);
return 0;
}
for (y = 0; y < 2 * steps_y; y++)
memset(sc[y], 0, sizeof(sc[y][0]) * (width + 2 * steps_x));
memset(sc[sc_offset + y], 0, sizeof(sc[y][0]) * (width + 2 * steps_x));
for (y = -steps_y; y < height + steps_y; y++) {
// if this is not the first tile, we start from (slice_start - steps_y),
// so we can get smooth result at slice boundary
if (slice_start > steps_y) {
src += (slice_start - steps_y) * src_stride;
dst += (slice_start - steps_y) * dst_stride;
}
for (y = -steps_y + slice_start; y < steps_y + slice_end; y++) {
if (y < height)
src2 = src;
memset(sr, 0, sizeof(sr[0]) * (2 * steps_x - 1));
memset(sr + sr_offset, 0, sizeof(sr[0]) * (2 * steps_x - 1));
for (x = -steps_x; x < width + steps_x; x++) {
tmp1 = x <= 0 ? src2[0] : x >= width ? src2[width-1] : src2[x];
for (z = 0; z < steps_x * 2; z += 2) {
tmp2 = sr[z + 0] + tmp1; sr[z + 0] = tmp1;
tmp1 = sr[z + 1] + tmp2; sr[z + 1] = tmp2;
tmp2 = sr[sr_offset + z + 0] + tmp1; sr[sr_offset + z + 0] = tmp1;
tmp1 = sr[sr_offset + z + 1] + tmp2; sr[sr_offset + z + 1] = tmp2;
}
for (z = 0; z < steps_y * 2; z += 2) {
tmp2 = sc[z + 0][x + steps_x] + tmp1; sc[z + 0][x + steps_x] = tmp1;
tmp1 = sc[z + 1][x + steps_x] + tmp2; sc[z + 1][x + steps_x] = tmp2;
tmp2 = sc[sc_offset + z + 0][x + steps_x] + tmp1; sc[sc_offset + z + 0][x + steps_x] = tmp1;
tmp1 = sc[sc_offset + z + 1][x + steps_x] + tmp2; sc[sc_offset + z + 1][x + steps_x] = tmp2;
}
if (x >= steps_x && y >= steps_y) {
if (x >= steps_x && y >= (steps_y + slice_start)) {
const uint8_t *srx = src - steps_y * src_stride + x - steps_x;
uint8_t *dsx = dst - steps_y * dst_stride + x - steps_x;
@ -99,6 +130,7 @@ static void apply_unsharp( uint8_t *dst, int dst_stride,
src += src_stride;
}
}
return 0;
}
static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
@ -107,6 +139,8 @@ static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
UnsharpContext *s = ctx->priv;
int i, plane_w[3], plane_h[3];
UnsharpFilterParam *fp[3];
ThreadData td;
plane_w[0] = inlink->w;
plane_w[1] = plane_w[2] = AV_CEIL_RSHIFT(inlink->w, s->hsub);
plane_h[0] = inlink->h;
@ -114,7 +148,14 @@ static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
fp[0] = &s->luma;
fp[1] = fp[2] = &s->chroma;
for (i = 0; i < 3; i++) {
apply_unsharp(out->data[i], out->linesize[i], in->data[i], in->linesize[i], plane_w[i], plane_h[i], fp[i]);
td.fp = fp[i];
td.dst = out->data[i];
td.src = in->data[i];
td.width = plane_w[i];
td.height = plane_h[i];
td.dst_stride = out->linesize[i];
td.src_stride = in->linesize[i];
ctx->internal->execute(ctx, unsharp_slice, &td, NULL, FFMIN(plane_h[i], s->nb_threads));
}
return 0;
}
@ -163,6 +204,7 @@ static int query_formats(AVFilterContext *ctx)
static int init_filter_param(AVFilterContext *ctx, UnsharpFilterParam *fp, const char *effect_type, int width)
{
int z;
UnsharpContext *s = ctx->priv;
const char *effect = fp->amount == 0 ? "none" : fp->amount < 0 ? "blur" : "sharpen";
if (!(fp->msize_x & fp->msize_y & 1)) {
@ -175,7 +217,12 @@ static int init_filter_param(AVFilterContext *ctx, UnsharpFilterParam *fp, const
av_log(ctx, AV_LOG_VERBOSE, "effect:%s type:%s msize_x:%d msize_y:%d amount:%0.2f\n",
effect, effect_type, fp->msize_x, fp->msize_y, fp->amount / 65535.0);
for (z = 0; z < 2 * fp->steps_y; z++)
fp->sr = av_malloc_array((MAX_MATRIX_SIZE - 1) * s->nb_threads, sizeof(uint32_t));
fp->sc = av_malloc_array(2 * fp->steps_y * s->nb_threads, sizeof(uint32_t **));
if (!fp->sr || !fp->sc)
return AVERROR(ENOMEM);
for (z = 0; z < 2 * fp->steps_y * s->nb_threads; z++)
if (!(fp->sc[z] = av_malloc_array(width + 2 * fp->steps_x,
sizeof(*(fp->sc[z])))))
return AVERROR(ENOMEM);
@ -192,6 +239,11 @@ static int config_props(AVFilterLink *link)
s->hsub = desc->log2_chroma_w;
s->vsub = desc->log2_chroma_h;
// ensure (height / nb_threads) > 4 * steps_y,
// so that we don't have too much overlap between two threads
s->nb_threads = FFMIN(ff_filter_get_nb_threads(link->dst),
link->h / (4 * s->luma.steps_y));
ret = init_filter_param(link->dst, &s->luma, "luma", link->w);
if (ret < 0)
return ret;
@ -202,20 +254,22 @@ static int config_props(AVFilterLink *link)
return 0;
}
static void free_filter_param(UnsharpFilterParam *fp)
static void free_filter_param(UnsharpFilterParam *fp, int nb_threads)
{
int z;
for (z = 0; z < 2 * fp->steps_y; z++)
for (z = 0; z < 2 * fp->steps_y * nb_threads; z++)
av_freep(&fp->sc[z]);
av_freep(&fp->sc);
av_freep(&fp->sr);
}
static av_cold void uninit(AVFilterContext *ctx)
{
UnsharpContext *s = ctx->priv;
free_filter_param(&s->luma);
free_filter_param(&s->chroma);
free_filter_param(&s->luma, s->nb_threads);
free_filter_param(&s->chroma, s->nb_threads);
}
static int filter_frame(AVFilterLink *link, AVFrame *in)
@ -294,5 +348,5 @@ AVFilter ff_vf_unsharp = {
.query_formats = query_formats,
.inputs = avfilter_vf_unsharp_inputs,
.outputs = avfilter_vf_unsharp_outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};