1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00

diracdec: Move strides to bytes, and pointer types to uint8_t.

Start templating functions for move to support 10-bit
Parts of this patch were written by Rostislav Pehlivanov
This commit is contained in:
Kieran Kunhya 2015-12-09 13:43:29 +00:00 committed by Rostislav Pehlivanov
parent bd3409f52a
commit 9553689854
4 changed files with 164 additions and 103 deletions

View File

@ -118,7 +118,7 @@ static const enum AVPixelFormat dirac_pix_fmt[2][3] = {
/* [DIRAC_STD] 10.3 Parse Source Parameters.
* source_parameters(base_video_format) */
static int parse_source_parameters(AVCodecContext *avctx, GetBitContext *gb,
dirac_source_params *source)
dirac_source_params *source, int *bit_depth)
{
AVRational frame_rate = { 0, 0 };
unsigned luma_depth = 8, luma_offset = 16;
@ -239,6 +239,9 @@ static int parse_source_parameters(AVCodecContext *avctx, GetBitContext *gb,
if (luma_depth > 8)
av_log(avctx, AV_LOG_WARNING, "Bitdepth greater than 8\n");
*bit_depth = luma_depth;
avctx->pix_fmt = dirac_pix_fmt[!luma_offset][source->chroma_format];
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
if ((source->width % (1<<chroma_x_shift)) || (source->height % (1<<chroma_y_shift))) {
@ -290,7 +293,8 @@ static int parse_source_parameters(AVCodecContext *avctx, GetBitContext *gb,
/* [DIRAC_STD] 10. Sequence Header. sequence_header() */
int avpriv_dirac_parse_sequence_header(AVCodecContext *avctx, GetBitContext *gb,
dirac_source_params *source)
dirac_source_params *source,
int *bit_depth)
{
unsigned version_major;
unsigned video_format, picture_coding_mode;
@ -318,7 +322,7 @@ int avpriv_dirac_parse_sequence_header(AVCodecContext *avctx, GetBitContext *gb,
/* [DIRAC_STD] 10.3 Source Parameters
* Override the defaults. */
if (ret = parse_source_parameters(avctx, gb, source))
if (ret = parse_source_parameters(avctx, gb, source, bit_depth))
return ret;
ret = ff_set_dimensions(avctx, source->width, source->height);

View File

@ -55,6 +55,7 @@ typedef struct dirac_source_params {
} dirac_source_params;
int avpriv_dirac_parse_sequence_header(AVCodecContext *avctx, GetBitContext *gb,
dirac_source_params *source);
dirac_source_params *source,
int *bit_depth);
#endif /* AVCODEC_DIRAC_H */

View File

@ -97,11 +97,12 @@ typedef struct {
typedef struct SubBand {
int level;
int orientation;
int stride;
int stride; /* in bytes */
int width;
int height;
int pshift;
int quant;
IDWTELEM *ibuf;
uint8_t *ibuf;
struct SubBand *parent;
/* for low delay */
@ -117,9 +118,9 @@ typedef struct Plane {
int idwt_width;
int idwt_height;
int idwt_stride;
IDWTELEM *idwt_buf;
IDWTELEM *idwt_buf_base;
IDWTELEM *idwt_tmp;
uint8_t *idwt_buf;
uint8_t *idwt_buf_base;
uint8_t *idwt_tmp;
/* block length */
uint8_t xblen;
@ -147,6 +148,9 @@ typedef struct DiracContext {
int chroma_x_shift;
int chroma_y_shift;
int bit_depth; /* bit depth */
int pshift; /* pixel shift = bit_depth > 8 */
int zero_res; /* zero residue flag */
int is_arith; /* whether coeffs use arith or golomb coding */
int low_delay; /* use the low delay syntax */
@ -339,9 +343,9 @@ static int alloc_sequence_buffers(DiracContext *s)
w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * sizeof(IDWTELEM));
s->plane[i].idwt_tmp = av_malloc_array((w+16), sizeof(IDWTELEM));
s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
s->plane[i].idwt_tmp = av_malloc_array((w+16), 2 << s->pshift);
s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + (top_padding*w)*(2 << s->pshift);
if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
return AVERROR(ENOMEM);
}
@ -462,38 +466,6 @@ static av_cold int dirac_decode_end(AVCodecContext *avctx)
#define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
SubBand *b, IDWTELEM *buf, int x, int y)
{
int coeff, sign;
int sign_pred = 0;
int pred_ctx = CTX_ZPZN_F1;
/* Check if the parent subband has a 0 in the corresponding position */
if (b->parent)
pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
if (b->orientation == subband_hl)
sign_pred = buf[-b->stride];
/* Determine if the pixel has only zeros in its neighbourhood */
if (x) {
pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
if (b->orientation == subband_lh)
sign_pred = buf[-1];
} else {
pred_ctx += !buf[-b->stride];
}
coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
if (coeff) {
coeff = (coeff * qfactor + qoffset + 2) >> 2;
sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
coeff = (coeff ^ -sign) + sign;
}
*buf = coeff;
}
static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
{
int sign, coeff;
@ -507,6 +479,38 @@ static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffse
return coeff;
}
#define UNPACK_ARITH(n, type) \
static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
SubBand *b, type *buf, int x, int y) \
{ \
int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
const int mstride = -(b->stride >> (1+b->pshift)); \
if (b->parent) { \
const type *pbuf = (type *)b->parent->ibuf; \
const int stride = b->parent->stride >> (1+b->parent->pshift); \
pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
} \
if (b->orientation == subband_hl) \
sign_pred = buf[mstride]; \
if (x) { \
pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
if (b->orientation == subband_lh) \
sign_pred = buf[-1]; \
} else { \
pred_ctx += !buf[mstride]; \
} \
coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
if (coeff) { \
coeff = (coeff * qfactor + qoffset + 2) >> 2; \
sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
coeff = (coeff ^ -sign) + sign; \
} \
*buf = coeff; \
} \
UNPACK_ARITH(8, int16_t)
UNPACK_ARITH(10, int32_t)
/**
* Decode the coeffs in the rectangle defined by left, right, top, bottom
* [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
@ -518,7 +522,7 @@ static inline void codeblock(DiracContext *s, SubBand *b,
{
int x, y, zero_block;
int qoffset, qfactor;
IDWTELEM *buf;
uint8_t *buf;
/* check for any coded coefficients in this codeblock */
if (!blockcnt_one) {
@ -554,41 +558,59 @@ static inline void codeblock(DiracContext *s, SubBand *b,
qoffset = qoffset_inter_tab[b->quant];
buf = b->ibuf + top * b->stride;
if (is_arith) {
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
/* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
if (is_arith)
coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
else
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
if (b->pshift) {
coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
} else {
coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
}
}
buf += b->stride;
}
} else {
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
int val = coeff_unpack_golomb(gb, qfactor, qoffset);
if (b->pshift) {
AV_WN32(&buf[4*x], val);
} else {
AV_WN16(&buf[2*x], val);
}
}
buf += b->stride;
}
}
}
/**
* Dirac Specification ->
* 13.3 intra_dc_prediction(band)
*/
static inline void intra_dc_prediction(SubBand *b)
{
IDWTELEM *buf = b->ibuf;
int x, y;
#define INTRA_DC_PRED(n, type) \
static inline void intra_dc_prediction_##n(SubBand *b) \
{ \
type *buf = (type*)b->ibuf; \
int x, y; \
\
for (x = 1; x < b->width; x++) \
buf[x] += buf[x-1]; \
buf += (b->stride >> (1+b->pshift)); \
\
for (y = 1; y < b->height; y++) { \
buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
\
for (x = 1; x < b->width; x++) { \
int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
buf[x] += divide3(pred); \
} \
buf += (b->stride >> (1+b->pshift)); \
} \
} \
for (x = 1; x < b->width; x++)
buf[x] += buf[x-1];
buf += b->stride;
for (y = 1; y < b->height; y++) {
buf[0] += buf[-b->stride];
for (x = 1; x < b->width; x++) {
int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
buf[x] += divide3(pred);
}
buf += b->stride;
}
}
INTRA_DC_PRED(8, int16_t)
INTRA_DC_PRED(10, int32_t)
/**
* Dirac Specification ->
@ -623,8 +645,13 @@ static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b
top = bottom;
}
if (b->orientation == subband_ll && s->num_refs == 0)
intra_dc_prediction(b);
if (b->orientation == subband_ll && s->num_refs == 0) {
if (s->pshift) {
intra_dc_prediction_10(b);
} else {
intra_dc_prediction_8(b);
}
}
}
static int decode_subband_arith(AVCodecContext *avctx, void *b)
@ -680,6 +707,18 @@ static void decode_component(DiracContext *s, int comp)
avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
}
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
type *buf = (type *)buf1; \
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
if (get_bits_count(gb) >= ebits) \
return; \
if (buf2) { \
buf = (type *)buf2; \
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
if (get_bits_count(gb) >= ebits) \
return; \
} \
/* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
/* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
@ -694,30 +733,35 @@ static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
uint8_t *buf1 = b1->ibuf + top * b1->stride;
uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
int x, y;
/* we have to constantly check for overread since the spec explicitly
requires this, with the meaning that all remaining coeffs are set to 0 */
if (get_bits_count(gb) >= bits_end)
return;
if (s->pshift) {
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
if (get_bits_count(gb) >= bits_end)
return;
if (buf2) {
buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
if (get_bits_count(gb) >= bits_end)
return;
}
PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
}
buf1 += b1->stride;
if (buf2)
buf2 += b2->stride;
}
}
else {
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
}
buf1 += b1->stride;
if (buf2)
buf2 += b2->stride;
}
}
}
struct lowdelay_slice {
GetBitContext gb;
@ -810,9 +854,15 @@ static int decode_lowdelay(DiracContext *s)
avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
if (s->pshift) {
intra_dc_prediction_10(&s->plane[0].band[0][0]);
intra_dc_prediction_10(&s->plane[1].band[0][0]);
intra_dc_prediction_10(&s->plane[2].band[0][0]);
} else {
intra_dc_prediction_8(&s->plane[0].band[0][0]);
intra_dc_prediction_8(&s->plane[1].band[0][0]);
intra_dc_prediction_8(&s->plane[2].band[0][0]);
}
av_free(slices);
return 0;
}
@ -828,7 +878,7 @@ static void init_planes(DiracContext *s)
p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
p->idwt_stride = FFALIGN(p->idwt_width, 8);
p->idwt_stride = FFALIGN(p->idwt_width << (1 + s->pshift), 8);
for (level = s->wavelet_depth-1; level >= 0; level--) {
w = w>>1;
@ -836,6 +886,7 @@ static void init_planes(DiracContext *s)
for (orientation = !!level; orientation < 4; orientation++) {
SubBand *b = &p->band[level][orientation];
b->pshift = s->pshift;
b->ibuf = p->idwt_buf;
b->level = level;
b->stride = p->idwt_stride << (s->wavelet_depth - level);
@ -844,9 +895,9 @@ static void init_planes(DiracContext *s)
b->orientation = orientation;
if (orientation & 1)
b->ibuf += w;
b->ibuf += w << (1+b->pshift);
if (orientation > 1)
b->ibuf += b->stride>>1;
b->ibuf += (b->stride>>1);
if (level)
b->parent = &p->band[level-1][orientation];
@ -1615,7 +1666,7 @@ static int dirac_decode_frame_internal(DiracContext *s)
/* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
for (comp = 0; comp < 3; comp++) {
Plane *p = &s->plane[comp];
memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
}
if (!s->zero_res) {
if ((ret = decode_lowdelay(s)) < 0)
@ -1633,11 +1684,11 @@ static int dirac_decode_frame_internal(DiracContext *s)
if (!s->zero_res && !s->low_delay)
{
memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
}
ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp);
ret = ff_spatial_idwt_init2(&d, (int16_t*)p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride >> 1,
s->wavelet_idx+2, s->wavelet_depth, (int16_t*)p->idwt_tmp);
if (ret < 0)
return ret;
@ -1645,7 +1696,7 @@ static int dirac_decode_frame_internal(DiracContext *s)
for (y = 0; y < p->height; y += 16) {
ff_spatial_idwt_slice2(&d, y+16); /* decode */
s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
(int16_t*)(p->idwt_buf) + y*(p->idwt_stride >> 1), (p->idwt_stride >> 1), p->width, 16);
}
} else { /* inter */
int rowheight = p->ybsep*p->stride;
@ -1681,8 +1732,10 @@ static int dirac_decode_frame_internal(DiracContext *s)
mctmp += (start - dsty)*p->stride + p->xoffset;
ff_spatial_idwt_slice2(&d, start + h); /* decode */
/* NOTE: add_rect_clamped hasn't been templated hence the shifts.
* idwt_stride is passed as pixels, not in bytes as in the rest of the decoder */
s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
(int16_t*)(p->idwt_buf) + start*(p->idwt_stride >> 1), (p->idwt_stride >> 1), p->width, h);
dsty += p->ybsep;
}
@ -1860,10 +1913,13 @@ static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int
return 0;
/* [DIRAC_STD] 10. Sequence header */
ret = avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source);
ret = avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source,
&s->bit_depth);
if (ret < 0)
return ret;
s->pshift = s->bit_depth > 8;
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
ret = alloc_sequence_buffers(s);

View File

@ -31,7 +31,7 @@ static int dirac_header(AVFormatContext *s, int idx)
AVStream *st = s->streams[idx];
dirac_source_params source;
GetBitContext gb;
int ret;
int ret, bit_depth;
// already parsed the header
if (st->codec->codec_id == AV_CODEC_ID_DIRAC)
@ -41,7 +41,7 @@ static int dirac_header(AVFormatContext *s, int idx)
if (ret < 0)
return ret;
ret = avpriv_dirac_parse_sequence_header(st->codec, &gb, &source);
ret = avpriv_dirac_parse_sequence_header(st->codec, &gb, &source, &bit_depth);
if (ret < 0)
return ret;