mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
avfilter/unsharp: OpenCL unsharpen filter optimization: substitute N^2 filter computation with 2N+C
i7-4770K luma 21% faster, chroma 18% faster A10-7850K luma 42% faster, chroma 37% faster on 1920x1080 res Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
This commit is contained in:
parent
ac494e5a66
commit
a05a737316
@ -41,6 +41,10 @@ typedef struct {
|
||||
cl_kernel kernel_chroma;
|
||||
cl_mem cl_luma_mask;
|
||||
cl_mem cl_chroma_mask;
|
||||
cl_mem cl_luma_mask_x;
|
||||
cl_mem cl_chroma_mask_x;
|
||||
cl_mem cl_luma_mask_y;
|
||||
cl_mem cl_chroma_mask_y;
|
||||
int in_plane_size[8];
|
||||
int out_plane_size[8];
|
||||
int plane_num;
|
||||
|
@ -87,11 +87,12 @@ end:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int compute_mask_matrix(cl_mem cl_mask_matrix, int step_x, int step_y)
|
||||
static int copy_separable_masks(cl_mem cl_mask_x, cl_mem cl_mask_y, int step_x, int step_y)
|
||||
{
|
||||
int i, j, ret = 0;
|
||||
uint32_t *mask_matrix, *mask_x, *mask_y;
|
||||
size_t size_matrix = sizeof(uint32_t) * (2 * step_x + 1) * (2 * step_y + 1);
|
||||
int ret = 0;
|
||||
uint32_t *mask_x, *mask_y;
|
||||
size_t size_mask_x = sizeof(uint32_t) * (2 * step_x + 1);
|
||||
size_t size_mask_y = sizeof(uint32_t) * (2 * step_y + 1);
|
||||
mask_x = av_mallocz_array(2 * step_x + 1, sizeof(uint32_t));
|
||||
if (!mask_x) {
|
||||
ret = AVERROR(ENOMEM);
|
||||
@ -102,37 +103,36 @@ static int compute_mask_matrix(cl_mem cl_mask_matrix, int step_x, int step_y)
|
||||
ret = AVERROR(ENOMEM);
|
||||
goto end;
|
||||
}
|
||||
mask_matrix = av_mallocz(size_matrix);
|
||||
if (!mask_matrix) {
|
||||
ret = AVERROR(ENOMEM);
|
||||
goto end;
|
||||
}
|
||||
|
||||
ret = compute_mask(step_x, mask_x);
|
||||
if (ret < 0)
|
||||
goto end;
|
||||
ret = compute_mask(step_y, mask_y);
|
||||
if (ret < 0)
|
||||
goto end;
|
||||
for (j = 0; j < 2 * step_y + 1; j++) {
|
||||
for (i = 0; i < 2 * step_x + 1; i++) {
|
||||
mask_matrix[i + j * (2 * step_x + 1)] = mask_y[j] * mask_x[i];
|
||||
}
|
||||
}
|
||||
ret = av_opencl_buffer_write(cl_mask_matrix, (uint8_t *)mask_matrix, size_matrix);
|
||||
|
||||
ret = av_opencl_buffer_write(cl_mask_x, (uint8_t *)mask_x, size_mask_x);
|
||||
ret = av_opencl_buffer_write(cl_mask_y, (uint8_t *)mask_y, size_mask_y);
|
||||
end:
|
||||
av_freep(&mask_x);
|
||||
av_freep(&mask_y);
|
||||
av_freep(&mask_matrix);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int generate_mask(AVFilterContext *ctx)
|
||||
{
|
||||
UnsharpContext *unsharp = ctx->priv;
|
||||
int i, ret = 0, step_x[2], step_y[2];
|
||||
cl_mem masks[4];
|
||||
cl_mem mask_matrix[2];
|
||||
int i, ret = 0, step_x[2], step_y[2];
|
||||
|
||||
UnsharpContext *unsharp = ctx->priv;
|
||||
mask_matrix[0] = unsharp->opencl_ctx.cl_luma_mask;
|
||||
mask_matrix[1] = unsharp->opencl_ctx.cl_chroma_mask;
|
||||
masks[0] = unsharp->opencl_ctx.cl_luma_mask_x;
|
||||
masks[1] = unsharp->opencl_ctx.cl_luma_mask_y;
|
||||
masks[2] = unsharp->opencl_ctx.cl_chroma_mask_x;
|
||||
masks[3] = unsharp->opencl_ctx.cl_chroma_mask_y;
|
||||
step_x[0] = unsharp->luma.steps_x;
|
||||
step_x[1] = unsharp->chroma.steps_x;
|
||||
step_y[0] = unsharp->luma.steps_y;
|
||||
@ -144,12 +144,16 @@ static int generate_mask(AVFilterContext *ctx)
|
||||
else
|
||||
unsharp->opencl_ctx.use_fast_kernels = 1;
|
||||
|
||||
if (!masks[0] || !masks[1] || !masks[2] || !masks[3]) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Luma mask and chroma mask should not be NULL\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
if (!mask_matrix[0] || !mask_matrix[1]) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Luma mask and chroma mask should not be NULL\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
for (i = 0; i < 2; i++) {
|
||||
ret = compute_mask_matrix(mask_matrix[i], step_x[i], step_y[i]);
|
||||
ret = copy_separable_masks(masks[2*i], masks[2*i+1], step_x[i], step_y[i]);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
}
|
||||
@ -184,7 +188,8 @@ int ff_opencl_apply_unsharp(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
|
||||
ret = avpriv_opencl_set_parameter(&kernel1,
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask_x),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask_y),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->luma.amount),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->luma.scalebits),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->luma.halfscale),
|
||||
@ -201,7 +206,8 @@ int ff_opencl_apply_unsharp(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
|
||||
ret = avpriv_opencl_set_parameter(&kernel2,
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask_x),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask_y),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->chroma.amount),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->chroma.scalebits),
|
||||
FF_OPENCL_PARAM_INFO(unsharp->chroma.halfscale),
|
||||
@ -264,7 +270,9 @@ int ff_opencl_apply_unsharp(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
|
||||
return AVERROR_EXTERNAL;
|
||||
}
|
||||
}
|
||||
clFinish(unsharp->opencl_ctx.command_queue);
|
||||
//blocking map is suffficient, no need for clFinish
|
||||
//clFinish(unsharp->opencl_ctx.command_queue);
|
||||
|
||||
return av_opencl_buffer_read_image(out->data, unsharp->opencl_ctx.out_plane_size,
|
||||
unsharp->opencl_ctx.plane_num, unsharp->opencl_ctx.cl_outbuf,
|
||||
unsharp->opencl_ctx.cl_outbuf_size);
|
||||
@ -286,6 +294,27 @@ int ff_opencl_unsharp_init(AVFilterContext *ctx)
|
||||
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask,
|
||||
sizeof(uint32_t) * (2 * unsharp->chroma.steps_x + 1) * (2 * unsharp->chroma.steps_y + 1),
|
||||
CL_MEM_READ_ONLY, NULL);
|
||||
// separable filters
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask_x,
|
||||
sizeof(uint32_t) * (2 * unsharp->luma.steps_x + 1),
|
||||
CL_MEM_READ_ONLY, NULL);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask_y,
|
||||
sizeof(uint32_t) * (2 * unsharp->luma.steps_y + 1),
|
||||
CL_MEM_READ_ONLY, NULL);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask_x,
|
||||
sizeof(uint32_t) * (2 * unsharp->chroma.steps_x + 1),
|
||||
CL_MEM_READ_ONLY, NULL);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask_y,
|
||||
sizeof(uint32_t) * (2 * unsharp->chroma.steps_y + 1),
|
||||
CL_MEM_READ_ONLY, NULL);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ret = generate_mask(ctx);
|
||||
@ -339,6 +368,10 @@ void ff_opencl_unsharp_uninit(AVFilterContext *ctx)
|
||||
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_outbuf);
|
||||
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask);
|
||||
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask);
|
||||
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask_x);
|
||||
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask_x);
|
||||
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask_y);
|
||||
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask_y);
|
||||
clReleaseKernel(unsharp->opencl_ctx.kernel_default);
|
||||
clReleaseKernel(unsharp->opencl_ctx.kernel_luma);
|
||||
clReleaseKernel(unsharp->opencl_ctx.kernel_chroma);
|
||||
|
@ -36,7 +36,8 @@ inline unsigned char clip_uint8(int a)
|
||||
kernel void unsharp_luma(
|
||||
global unsigned char *src,
|
||||
global unsigned char *dst,
|
||||
global int *mask,
|
||||
global int *mask_x,
|
||||
global int *mask_y,
|
||||
int amount,
|
||||
int scalebits,
|
||||
int halfscale,
|
||||
@ -59,10 +60,12 @@ kernel void unsharp_luma(
|
||||
return;
|
||||
}
|
||||
|
||||
local uchar l[32][32];
|
||||
local int lc[LU_RADIUS_X*LU_RADIUS_Y];
|
||||
local unsigned int l[32][32];
|
||||
local unsigned int lcx[LU_RADIUS_X];
|
||||
local unsigned int lcy[LU_RADIUS_Y];
|
||||
int indexIx, indexIy, i, j;
|
||||
|
||||
//load up tile: actual workspace + halo of 8 points in x and y \n
|
||||
for(i = 0; i <= 1; i++) {
|
||||
indexIy = -8 + (blockIdx.y + i) * 16 + threadIdx.y;
|
||||
indexIy = indexIy < 0 ? 0 : indexIy;
|
||||
@ -76,27 +79,54 @@ kernel void unsharp_luma(
|
||||
}
|
||||
|
||||
int indexL = threadIdx.y*16 + threadIdx.x;
|
||||
if (indexL < LU_RADIUS_X*LU_RADIUS_Y)
|
||||
lc[indexL] = mask[indexL];
|
||||
if (indexL < LU_RADIUS_X)
|
||||
lcx[indexL] = mask_x[indexL];
|
||||
if (indexL < LU_RADIUS_Y)
|
||||
lcy[indexL] = mask_y[indexL];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int idx, idy, maskIndex;
|
||||
int sum = 0;
|
||||
int steps_x = LU_RADIUS_X/2;
|
||||
int steps_y = LU_RADIUS_Y/2;
|
||||
//needed for unsharp mask application in the end \n
|
||||
int orig_value = (int)l[threadIdx.y + 8][threadIdx.x + 8];
|
||||
|
||||
\n#pragma unroll\n
|
||||
for (i = -steps_y; i <= steps_y; i++) {
|
||||
idy = 8 + i + threadIdx.y;
|
||||
\n#pragma unroll\n
|
||||
for (j = -steps_x; j <= steps_x; j++) {
|
||||
idx = 8 + j + threadIdx.x;
|
||||
maskIndex = (i + steps_y)*LU_RADIUS_X + j + steps_x;
|
||||
sum += (int)l[idy][idx] * lc[maskIndex];
|
||||
int idx, idy, maskIndex;
|
||||
int temp[2] = {0};
|
||||
int steps_x = (LU_RADIUS_X-1)/2;
|
||||
int steps_y = (LU_RADIUS_Y-1)/2;
|
||||
|
||||
// compute the actual workspace + left&right halos \n
|
||||
\n#pragma unroll\n
|
||||
for (j = 0; j <=1; j++) {
|
||||
//extra work to cover left and right halos \n
|
||||
idx = 16*j + threadIdx.x;
|
||||
\n#pragma unroll\n
|
||||
for (i = -steps_y; i <= steps_y; i++) {
|
||||
idy = 8 + i + threadIdx.y;
|
||||
maskIndex = (i + steps_y);
|
||||
temp[j] += (int)l[idy][idx] * lcy[maskIndex];
|
||||
}
|
||||
}
|
||||
int temp = (int)l[threadIdx.y + 8][threadIdx.x + 8];
|
||||
int res = temp + (((temp - (int)((sum + halfscale) >> scalebits)) * amount) >> 16);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//save results from the vertical filter in local memory \n
|
||||
idy = 8 + threadIdx.y;
|
||||
\n#pragma unroll\n
|
||||
for (j = 0; j <=1; j++) {
|
||||
idx = 16*j + threadIdx.x;
|
||||
l[idy][idx] = temp[j];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//compute results with the horizontal filter \n
|
||||
int sum = 0;
|
||||
idy = 8 + threadIdx.y;
|
||||
\n#pragma unroll\n
|
||||
for (j = -steps_x; j <= steps_x; j++) {
|
||||
idx = 8 + j + threadIdx.x;
|
||||
maskIndex = j + steps_x;
|
||||
sum += (int)l[idy][idx] * lcx[maskIndex];
|
||||
}
|
||||
|
||||
int res = orig_value + (((orig_value - (int)((sum + halfscale) >> scalebits)) * amount) >> 16);
|
||||
|
||||
if (globalIdx.x < width && globalIdx.y < height)
|
||||
dst[globalIdx.x + globalIdx.y*dst_stride] = clip_uint8(res);
|
||||
}
|
||||
@ -104,7 +134,8 @@ kernel void unsharp_luma(
|
||||
kernel void unsharp_chroma(
|
||||
global unsigned char *src_y,
|
||||
global unsigned char *dst_y,
|
||||
global int *mask,
|
||||
global int *mask_x,
|
||||
global int *mask_y,
|
||||
int amount,
|
||||
int scalebits,
|
||||
int halfscale,
|
||||
@ -141,8 +172,9 @@ kernel void unsharp_chroma(
|
||||
return;
|
||||
}
|
||||
|
||||
local uchar l[32][32];
|
||||
local int lc[CH_RADIUS_X*CH_RADIUS_Y];
|
||||
local unsigned int l[32][32];
|
||||
local unsigned int lcx[CH_RADIUS_X];
|
||||
local unsigned int lcy[CH_RADIUS_Y];
|
||||
int indexIx, indexIy, i, j;
|
||||
for(i = 0; i <= 1; i++) {
|
||||
indexIy = -8 + (blockIdx.y + i) * 16 + threadIdx.y;
|
||||
@ -157,27 +189,51 @@ kernel void unsharp_chroma(
|
||||
}
|
||||
|
||||
int indexL = threadIdx.y*16 + threadIdx.x;
|
||||
if (indexL < CH_RADIUS_X*CH_RADIUS_Y)
|
||||
lc[indexL] = mask[indexL];
|
||||
if (indexL < CH_RADIUS_X)
|
||||
lcx[indexL] = mask_x[indexL];
|
||||
if (indexL < CH_RADIUS_Y)
|
||||
lcy[indexL] = mask_y[indexL];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int orig_value = (int)l[threadIdx.y + 8][threadIdx.x + 8];
|
||||
|
||||
int idx, idy, maskIndex;
|
||||
int sum = 0;
|
||||
int steps_x = CH_RADIUS_X/2;
|
||||
int steps_y = CH_RADIUS_Y/2;
|
||||
int temp[2] = {0,0};
|
||||
|
||||
\n#pragma unroll\n
|
||||
for (i = -steps_y; i <= steps_y; i++) {
|
||||
idy = 8 + i + threadIdx.y;
|
||||
for (j = 0; j <= 1; j++) {
|
||||
idx = 16*j + threadIdx.x;
|
||||
\n#pragma unroll\n
|
||||
for (j = -steps_x; j <= steps_x; j++) {
|
||||
idx = 8 + j + threadIdx.x;
|
||||
maskIndex = (i + steps_y)*CH_RADIUS_X + j + steps_x;
|
||||
sum += (int)l[idy][idx] * lc[maskIndex];
|
||||
}
|
||||
for (i = -steps_y; i <= steps_y; i++) {
|
||||
idy = 8 + i + threadIdx.y;
|
||||
maskIndex = i + steps_y;
|
||||
temp[j] += (int)l[idy][idx] * lcy[maskIndex];
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
idy = 8 + threadIdx.y;
|
||||
\n#pragma unroll\n
|
||||
for (j = 0; j <= 1; j++) {
|
||||
idx = 16*j + threadIdx.x;
|
||||
l[idy][idx] = temp[j];
|
||||
}
|
||||
int temp = (int)l[threadIdx.y + 8][threadIdx.x + 8];
|
||||
int res = temp + (((temp - (int)((sum + halfscale) >> scalebits)) * amount) >> 16);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//compute results with the horizontal filter \n
|
||||
int sum = 0;
|
||||
idy = 8 + threadIdx.y;
|
||||
\n#pragma unroll\n
|
||||
for (j = -steps_x; j <= steps_x; j++) {
|
||||
idx = 8 + j + threadIdx.x;
|
||||
maskIndex = j + steps_x;
|
||||
sum += (int)l[idy][idx] * lcx[maskIndex];
|
||||
}
|
||||
|
||||
int res = orig_value + (((orig_value - (int)((sum + halfscale) >> scalebits)) * amount) >> 16);
|
||||
|
||||
if (globalIdx.x < cw && globalIdx.y < ch)
|
||||
dst[globalIdx.x + globalIdx.y*dst_stride_ch] = clip_uint8(res);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user