diff --git a/doc/general.texi b/doc/general.texi index e6ae277d23..de4efee913 100644 --- a/doc/general.texi +++ b/doc/general.texi @@ -993,6 +993,8 @@ following image formats are supported: @item Amazing Studio PAF Audio @tab @tab X @item Apple lossless audio @tab X @tab X @tab QuickTime fourcc 'alac' +@item aptX @tab X @tab X + @tab Used in Bluetooth A2DP @item ATRAC1 @tab @tab X @item ATRAC3 @tab @tab X @item ATRAC3+ @tab @tab X diff --git a/libavcodec/Makefile b/libavcodec/Makefile index 45f4db5939..95c843dee7 100644 --- a/libavcodec/Makefile +++ b/libavcodec/Makefile @@ -188,6 +188,8 @@ OBJS-$(CONFIG_AMV_ENCODER) += mjpegenc.o mjpegenc_common.o \ OBJS-$(CONFIG_ANM_DECODER) += anm.o OBJS-$(CONFIG_ANSI_DECODER) += ansi.o cga_data.o OBJS-$(CONFIG_APE_DECODER) += apedec.o +OBJS-$(CONFIG_APTX_DECODER) += aptx.o +OBJS-$(CONFIG_APTX_ENCODER) += aptx.o OBJS-$(CONFIG_APNG_DECODER) += png.o pngdec.o pngdsp.o OBJS-$(CONFIG_APNG_ENCODER) += png.o pngenc.o OBJS-$(CONFIG_SSA_DECODER) += assdec.o ass.o diff --git a/libavcodec/allcodecs.c b/libavcodec/allcodecs.c index d96e499ba7..463f7ed64e 100644 --- a/libavcodec/allcodecs.c +++ b/libavcodec/allcodecs.c @@ -406,6 +406,7 @@ static void register_all(void) REGISTER_DECODER(AMRNB, amrnb); REGISTER_DECODER(AMRWB, amrwb); REGISTER_DECODER(APE, ape); + REGISTER_ENCDEC (APTX, aptx); REGISTER_DECODER(ATRAC1, atrac1); REGISTER_DECODER(ATRAC3, atrac3); REGISTER_DECODER(ATRAC3AL, atrac3al); diff --git a/libavcodec/aptx.c b/libavcodec/aptx.c new file mode 100644 index 0000000000..d09ce8f838 --- /dev/null +++ b/libavcodec/aptx.c @@ -0,0 +1,860 @@ +/* + * Audio Processing Technology codec for Bluetooth (aptX) + * + * Copyright (C) 2017 Aurelien Jacobs + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "libavutil/intreadwrite.h" +#include "avcodec.h" +#include "internal.h" +#include "mathops.h" +#include "audio_frame_queue.h" + + +enum channels { + LEFT, + RIGHT, + NB_CHANNELS +}; + +enum subbands { + LF, // Low Frequency (0-5.5 kHz) + MLF, // Medium-Low Frequency (5.5-11kHz) + MHF, // Medium-High Frequency (11-16.5kHz) + HF, // High Frequency (16.5-22kHz) + NB_SUBBANDS +}; + +#define NB_FILTERS 2 +#define FILTER_TAPS 16 + +typedef struct { + int pos; + int32_t buffer[2*FILTER_TAPS]; +} FilterSignal; + +typedef struct { + FilterSignal outer_filter_signal[NB_FILTERS]; + FilterSignal inner_filter_signal[NB_FILTERS][NB_FILTERS]; +} QMFAnalysis; + +typedef struct { + int32_t quantized_sample; + int32_t quantized_sample_parity_change; + int32_t error; +} Quantize; + +typedef struct { + int32_t quantization_factor; + int32_t factor_select; + int32_t reconstructed_difference; +} InvertQuantize; + +typedef struct { + int32_t prev_sign[2]; + int32_t s_weight[2]; + int32_t d_weight[24]; + int32_t pos; + int32_t reconstructed_differences[48]; + int32_t previous_reconstructed_sample; + int32_t predicted_difference; + int32_t predicted_sample; +} Prediction; + +typedef struct { + int32_t codeword_history; + int32_t dither_parity; + int32_t dither[NB_SUBBANDS]; + + QMFAnalysis qmf; + Quantize quantize[NB_SUBBANDS]; + InvertQuantize invert_quantize[NB_SUBBANDS]; + Prediction prediction[NB_SUBBANDS]; +} Channel; + +typedef struct { + int32_t sync_idx; + Channel channels[NB_CHANNELS]; + AudioFrameQueue afq; +} AptXContext; + + +static const int32_t quantize_intervals_LF[65] = { + -9948, 9948, 29860, 49808, 69822, 89926, 110144, 130502, + 151026, 171738, 192666, 213832, 235264, 256982, 279014, 301384, + 324118, 347244, 370790, 394782, 419250, 444226, 469742, 495832, + 522536, 549890, 577936, 606720, 636290, 666700, 698006, 730270, + 763562, 797958, 833538, 870398, 908640, 948376, 989740, 1032874, + 1077948, 1125150, 1174700, 1226850, 1281900, 1340196, 1402156, 1468282, + 1539182, 1615610, 1698514, 1789098, 1888944, 2000168, 2125700, 2269750, + 2438670, 2642660, 2899462, 3243240, 3746078, 4535138, 5664098, 7102424, + 8897462, +}; +static const int32_t invert_quantize_dither_factors_LF[65] = { + 9948, 9948, 9962, 9988, 10026, 10078, 10142, 10218, + 10306, 10408, 10520, 10646, 10784, 10934, 11098, 11274, + 11462, 11664, 11880, 12112, 12358, 12618, 12898, 13194, + 13510, 13844, 14202, 14582, 14988, 15422, 15884, 16380, + 16912, 17484, 18098, 18762, 19480, 20258, 21106, 22030, + 23044, 24158, 25390, 26760, 28290, 30008, 31954, 34172, + 36728, 39700, 43202, 47382, 52462, 58762, 66770, 77280, + 91642, 112348, 144452, 199326, 303512, 485546, 643414, 794914, + 1000124, +}; +static const int32_t quantize_dither_factors_LF[65] = { + 0, 4, 7, 10, 13, 16, 19, 22, + 26, 28, 32, 35, 38, 41, 44, 47, + 51, 54, 58, 62, 65, 70, 74, 79, + 84, 90, 95, 102, 109, 116, 124, 133, + 143, 154, 166, 180, 195, 212, 231, 254, + 279, 308, 343, 383, 430, 487, 555, 639, + 743, 876, 1045, 1270, 1575, 2002, 2628, 3591, + 5177, 8026, 13719, 26047, 45509, 39467, 37875, 51303, + 0, +}; +static const int16_t quantize_factor_select_offset_LF[65] = { + 0, -21, -19, -17, -15, -12, -10, -8, + -6, -4, -1, 1, 3, 6, 8, 10, + 13, 15, 18, 20, 23, 26, 29, 31, + 34, 37, 40, 43, 47, 50, 53, 57, + 60, 64, 68, 72, 76, 80, 85, 89, + 94, 99, 105, 110, 116, 123, 129, 136, + 144, 152, 161, 171, 182, 194, 207, 223, + 241, 263, 291, 328, 382, 467, 522, 522, + 522, +}; + + +static const int32_t quantize_intervals_MLF[9] = { + -89806, 89806, 278502, 494338, 759442, 1113112, 1652322, 2720256, 5190186, +}; +static const int32_t invert_quantize_dither_factors_MLF[9] = { + 89806, 89806, 98890, 116946, 148158, 205512, 333698, 734236, 1735696, +}; +static const int32_t quantize_dither_factors_MLF[9] = { + 0, 2271, 4514, 7803, 14339, 32047, 100135, 250365, 0, +}; +static const int16_t quantize_factor_select_offset_MLF[9] = { + 0, -14, 6, 29, 58, 96, 154, 270, 521, +}; + + +static const int32_t quantize_intervals_MHF[3] = { + -194080, 194080, 890562, +}; +static const int32_t invert_quantize_dither_factors_MHF[3] = { + 194080, 194080, 502402, +}; +static const int32_t quantize_dither_factors_MHF[3] = { + 0, 77081, 0, +}; +static const int16_t quantize_factor_select_offset_MHF[3] = { + 0, -33, 136, +}; + + +static const int32_t quantize_intervals_HF[5] = { + -163006, 163006, 542708, 1120554, 2669238, +}; +static const int32_t invert_quantize_dither_factors_HF[5] = { + 163006, 163006, 216698, 361148, 1187538, +}; +static const int32_t quantize_dither_factors_HF[5] = { + 0, 13423, 36113, 206598, 0, +}; +static const int16_t quantize_factor_select_offset_HF[5] = { + 0, -8, 33, 95, 262, +}; + +typedef const struct { + const int32_t *quantize_intervals; + const int32_t *invert_quantize_dither_factors; + const int32_t *quantize_dither_factors; + const int16_t *quantize_factor_select_offset; + int tables_size; + int32_t quantized_bits; + int32_t prediction_order; +} ConstTables; + +static ConstTables tables[NB_SUBBANDS] = { + [LF] = { quantize_intervals_LF, + invert_quantize_dither_factors_LF, + quantize_dither_factors_LF, + quantize_factor_select_offset_LF, + FF_ARRAY_ELEMS(quantize_intervals_LF), + 7, 24 }, + [MLF] = { quantize_intervals_MLF, + invert_quantize_dither_factors_MLF, + quantize_dither_factors_MLF, + quantize_factor_select_offset_MLF, + FF_ARRAY_ELEMS(quantize_intervals_MLF), + 4, 12 }, + [MHF] = { quantize_intervals_MHF, + invert_quantize_dither_factors_MHF, + quantize_dither_factors_MHF, + quantize_factor_select_offset_MHF, + FF_ARRAY_ELEMS(quantize_intervals_MHF), + 2, 6 }, + [HF] = { quantize_intervals_HF, + invert_quantize_dither_factors_HF, + quantize_dither_factors_HF, + quantize_factor_select_offset_HF, + FF_ARRAY_ELEMS(quantize_intervals_HF), + 3, 12 }, +}; + +static const int16_t quantization_factors[32] = { + 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, + 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, + 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, + 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008, +}; + + +/* Rounded right shift with optionnal clipping */ +#define RSHIFT_SIZE(size) \ +av_always_inline \ +static int##size##_t rshift##size(int##size##_t value, int shift) \ +{ \ + int##size##_t rounding = (int##size##_t)1 << (shift - 1); \ + int##size##_t mask = ((int##size##_t)1 << (shift + 1)) - 1; \ + return ((value + rounding) >> shift) - ((value & mask) == rounding); \ +} \ +av_always_inline \ +static int##size##_t rshift##size##_clip24(int##size##_t value, int shift) \ +{ \ + return av_clip_intp2(rshift##size(value, shift), 23); \ +} +RSHIFT_SIZE(32) +RSHIFT_SIZE(64) + + +av_always_inline +static void aptx_update_codeword_history(Channel *channel) +{ + int32_t cw = ((channel->quantize[0].quantized_sample & 3) << 0) + + ((channel->quantize[1].quantized_sample & 2) << 1) + + ((channel->quantize[2].quantized_sample & 1) << 3); + channel->codeword_history = (cw << 8) + (channel->codeword_history << 4); +} + +static void aptx_generate_dither(Channel *channel) +{ + int subband; + int64_t m; + int32_t d; + + aptx_update_codeword_history(channel); + + m = (int64_t)5184443 * (channel->codeword_history >> 7); + d = (m << 2) + (m >> 22); + for (subband = 0; subband < NB_SUBBANDS; subband++) + channel->dither[subband] = d << (23 - 5*subband); + channel->dither_parity = (d >> 25) & 1; +} + +/* + * Convolution filter coefficients for the outer QMF of the QMF tree. + * The 2 sets are a mirror of each other. + */ +static const int32_t aptx_qmf_outer_coeffs[NB_FILTERS][FILTER_TAPS] = { + { + 730, -413, -9611, 43626, -121026, 269973, -585547, 2801966, + 697128, -160481, 27611, 8478, -10043, 3511, 688, -897, + }, + { + -897, 688, 3511, -10043, 8478, 27611, -160481, 697128, + 2801966, -585547, 269973, -121026, 43626, -9611, -413, 730, + }, +}; + +/* + * Convolution filter coefficients for the inner QMF of the QMF tree. + * The 2 sets are a mirror of each other. + */ +static const int32_t aptx_qmf_inner_coeffs[NB_FILTERS][FILTER_TAPS] = { + { + 1033, -584, -13592, 61697, -171156, 381799, -828088, 3962579, + 985888, -226954, 39048, 11990, -14203, 4966, 973, -1268, + }, + { + -1268, 973, 4966, -14203, 11990, 39048, -226954, 985888, + 3962579, -828088, 381799, -171156, 61697, -13592, -584, 1033, + }, +}; + +/* + * Push one sample into a circular signal buffer. + */ +av_always_inline +static void aptx_qmf_filter_signal_push(FilterSignal *signal, int32_t sample) +{ + signal->buffer[signal->pos ] = sample; + signal->buffer[signal->pos+FILTER_TAPS] = sample; + signal->pos = (signal->pos + 1) & (FILTER_TAPS - 1); +} + +/* + * Compute the convolution of the signal with the coefficients, and reduce + * to 24 bits by applying the specified right shifting. + */ +av_always_inline +static int32_t aptx_qmf_convolution(FilterSignal *signal, + const int32_t coeffs[FILTER_TAPS], + int shift) +{ + int32_t *sig = &signal->buffer[signal->pos]; + int64_t e = 0; + int i; + + for (i = 0; i < FILTER_TAPS; i++) + e += MUL64(sig[i], coeffs[i]); + + return rshift64_clip24(e, shift); +} + +/* + * Half-band QMF analysis filter realized with a polyphase FIR filter. + * Split into 2 subbands and downsample by 2. + * So for each pair of samples that goes in, one sample goes out, + * split into 2 separate subbands. + */ +av_always_inline +static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS], + const int32_t coeffs[NB_FILTERS][FILTER_TAPS], + int shift, + int32_t samples[NB_FILTERS], + int32_t *low_subband_output, + int32_t *high_subband_output) +{ + int32_t subbands[NB_FILTERS]; + int i; + + for (i = 0; i < NB_FILTERS; i++) { + aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]); + subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); + } + + *low_subband_output = av_clip_intp2(subbands[0] + subbands[1], 23); + *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23); +} + +/* + * Two stage QMF analysis tree. + * Split 4 input samples into 4 subbands and downsample by 4. + * So for each group of 4 samples that goes in, one sample goes out, + * split into 4 separate subbands. + */ +static void aptx_qmf_tree_analysis(QMFAnalysis *qmf, + int32_t samples[4], + int32_t subband_samples[4]) +{ + int32_t intermediate_samples[4]; + int i; + + /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */ + for (i = 0; i < 2; i++) + aptx_qmf_polyphase_analysis(qmf->outer_filter_signal, + aptx_qmf_outer_coeffs, 23, + &samples[2*i], + &intermediate_samples[0+i], + &intermediate_samples[2+i]); + + /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */ + for (i = 0; i < 2; i++) + aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i], + aptx_qmf_inner_coeffs, 23, + &intermediate_samples[2*i], + &subband_samples[2*i+0], + &subband_samples[2*i+1]); +} + +/* + * Half-band QMF synthesis filter realized with a polyphase FIR filter. + * Join 2 subbands and upsample by 2. + * So for each 2 subbands sample that goes in, a pair of samples goes out. + */ +av_always_inline +static void aptx_qmf_polyphase_synthesis(FilterSignal signal[NB_FILTERS], + const int32_t coeffs[NB_FILTERS][FILTER_TAPS], + int shift, + int32_t low_subband_input, + int32_t high_subband_input, + int32_t samples[NB_FILTERS]) +{ + int32_t subbands[NB_FILTERS]; + int i; + + subbands[0] = low_subband_input + high_subband_input; + subbands[1] = low_subband_input - high_subband_input; + + for (i = 0; i < NB_FILTERS; i++) { + aptx_qmf_filter_signal_push(&signal[i], subbands[1-i]); + samples[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); + } +} + +/* + * Two stage QMF synthesis tree. + * Join 4 subbands and upsample by 4. + * So for each 4 subbands sample that goes in, a group of 4 samples goes out. + */ +static void aptx_qmf_tree_synthesis(QMFAnalysis *qmf, + int32_t subband_samples[4], + int32_t samples[4]) +{ + int32_t intermediate_samples[4]; + int i; + + /* Join 4 subbands into 2 intermediate subbands upsampled to 2 samples. */ + for (i = 0; i < 2; i++) + aptx_qmf_polyphase_synthesis(qmf->inner_filter_signal[i], + aptx_qmf_inner_coeffs, 22, + subband_samples[2*i+0], + subband_samples[2*i+1], + &intermediate_samples[2*i]); + + /* Join 2 samples from intermediate subbands upsampled to 4 samples. */ + for (i = 0; i < 2; i++) + aptx_qmf_polyphase_synthesis(qmf->outer_filter_signal, + aptx_qmf_outer_coeffs, 21, + intermediate_samples[0+i], + intermediate_samples[2+i], + &samples[2*i]); +} + + +av_always_inline +static int32_t aptx_bin_search(int32_t value, int32_t factor, + const int32_t *intervals, int32_t nb_intervals) +{ + int32_t idx = 0; + int i; + + for (i = nb_intervals >> 1; i > 0; i >>= 1) + if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24)) + idx += i; + + return idx; +} + +static void aptx_quantize_difference(Quantize *quantize, + int32_t sample_difference, + int32_t dither, + int32_t quantization_factor, + ConstTables *tables) +{ + const int32_t *intervals = tables->quantize_intervals; + int32_t quantized_sample, dithered_sample, parity_change; + int32_t d, mean, interval, inv; + int64_t error; + + quantized_sample = aptx_bin_search(FFABS(sample_difference) >> 4, + quantization_factor, + intervals, tables->tables_size); + + d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23); + d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23); + + intervals += quantized_sample; + mean = (intervals[1] + intervals[0]) / 2; + interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1); + + dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)(mean + d) << 32), 32); + error = ((int64_t)FFABS(sample_difference) << 20) - MUL64(dithered_sample, quantization_factor); + quantize->error = FFABS(rshift64(error, 23)); + + parity_change = quantized_sample; + if (error < 0) + quantized_sample--; + else + parity_change--; + + inv = -(sample_difference < 0); + quantize->quantized_sample = quantized_sample ^ inv; + quantize->quantized_sample_parity_change = parity_change ^ inv; +} + +static void aptx_encode_channel(Channel *channel, int32_t samples[4]) +{ + int32_t subband_samples[4]; + int subband; + aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples); + aptx_generate_dither(channel); + for (subband = 0; subband < NB_SUBBANDS; subband++) { + int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23); + aptx_quantize_difference(&channel->quantize[subband], diff, + channel->dither[subband], + channel->invert_quantize[subband].quantization_factor, + &tables[subband]); + } +} + +static void aptx_decode_channel(Channel *channel, int32_t samples[4]) +{ + int32_t subband_samples[4]; + int subband; + for (subband = 0; subband < NB_SUBBANDS; subband++) + subband_samples[subband] = channel->prediction[subband].previous_reconstructed_sample; + aptx_qmf_tree_synthesis(&channel->qmf, subband_samples, samples); +} + + +static void aptx_invert_quantization(InvertQuantize *invert_quantize, + int32_t quantized_sample, int32_t dither, + ConstTables *tables) +{ + int32_t qr, idx, shift, factor_select; + + idx = (quantized_sample ^ -(quantized_sample < 0)) + 1; + qr = tables->quantize_intervals[idx] / 2; + if (quantized_sample < 0) + qr = -qr; + + qr = rshift64_clip24(((int64_t)qr<<32) + MUL64(dither, tables->invert_quantize_dither_factors[idx]), 32); + invert_quantize->reconstructed_difference = MUL64(invert_quantize->quantization_factor, qr) >> 19; + + shift = 24 - tables->quantized_bits; + + /* update factor_select */ + factor_select = 32620 * invert_quantize->factor_select; + factor_select = rshift32(factor_select + (tables->quantize_factor_select_offset[idx] << 15), 15); + invert_quantize->factor_select = av_clip(factor_select, 0, (shift << 8) | 0xFF); + + /* update quantization factor */ + idx = (invert_quantize->factor_select & 0xFF) >> 3; + shift -= invert_quantize->factor_select >> 8; + invert_quantize->quantization_factor = (quantization_factors[idx] << 11) >> shift; +} + +static int32_t *aptx_reconstructed_differences_update(Prediction *prediction, + int32_t reconstructed_difference, + int order) +{ + int32_t *rd1 = prediction->reconstructed_differences, *rd2 = rd1 + order; + int p = prediction->pos; + + rd1[p] = rd2[p]; + prediction->pos = p = (p + 1) % order; + rd2[p] = reconstructed_difference; + return &rd2[p]; +} + +static void aptx_prediction_filtering(Prediction *prediction, + int32_t reconstructed_difference, + int order) +{ + int32_t reconstructed_sample, predictor, srd0; + int32_t *reconstructed_differences; + int64_t predicted_difference = 0; + int i; + + reconstructed_sample = av_clip_intp2(reconstructed_difference + prediction->predicted_sample, 23); + predictor = av_clip_intp2((MUL64(prediction->s_weight[0], prediction->previous_reconstructed_sample) + + MUL64(prediction->s_weight[1], reconstructed_sample)) >> 22, 23); + prediction->previous_reconstructed_sample = reconstructed_sample; + + reconstructed_differences = aptx_reconstructed_differences_update(prediction, reconstructed_difference, order); + srd0 = FFDIFFSIGN(reconstructed_difference, 0) << 23; + for (i = 0; i < order; i++) { + int32_t srd = FF_SIGNBIT(reconstructed_differences[-i-1]) | 1; + prediction->d_weight[i] -= rshift32(prediction->d_weight[i] - srd*srd0, 8); + predicted_difference += MUL64(reconstructed_differences[-i], prediction->d_weight[i]); + } + + prediction->predicted_difference = av_clip_intp2(predicted_difference >> 22, 23); + prediction->predicted_sample = av_clip_intp2(predictor + prediction->predicted_difference, 23); +} + +static void aptx_process_subband(InvertQuantize *invert_quantize, + Prediction *prediction, + int32_t quantized_sample, int32_t dither, + ConstTables *tables) +{ + int32_t sign, same_sign[2], weight[2], sw1, range; + + aptx_invert_quantization(invert_quantize, quantized_sample, dither, tables); + + sign = FFDIFFSIGN(invert_quantize->reconstructed_difference, + -prediction->predicted_difference); + same_sign[0] = sign * prediction->prev_sign[0]; + same_sign[1] = sign * prediction->prev_sign[1]; + prediction->prev_sign[0] = prediction->prev_sign[1]; + prediction->prev_sign[1] = sign | 1; + + range = 0x100000; + sw1 = rshift32(-same_sign[1] * prediction->s_weight[1], 1); + sw1 = (av_clip(sw1, -range, range) & ~0xF) << 4; + + range = 0x300000; + weight[0] = 254 * prediction->s_weight[0] + 0x800000*same_sign[0] + sw1; + prediction->s_weight[0] = av_clip(rshift32(weight[0], 8), -range, range); + + range = 0x3C0000 - prediction->s_weight[0]; + weight[1] = 255 * prediction->s_weight[1] + 0xC00000*same_sign[1]; + prediction->s_weight[1] = av_clip(rshift32(weight[1], 8), -range, range); + + aptx_prediction_filtering(prediction, + invert_quantize->reconstructed_difference, + tables->prediction_order); +} + +static void aptx_invert_quantize_and_prediction(Channel *channel) +{ + int subband; + for (subband = 0; subband < NB_SUBBANDS; subband++) + aptx_process_subband(&channel->invert_quantize[subband], + &channel->prediction[subband], + channel->quantize[subband].quantized_sample, + channel->dither[subband], + &tables[subband]); +} + +static int32_t aptx_quantized_parity(Channel *channel) +{ + int32_t parity = channel->dither_parity; + int subband; + + for (subband = 0; subband < NB_SUBBANDS; subband++) + parity ^= channel->quantize[subband].quantized_sample; + + return parity & 1; +} + +/* For each sample, ensure that the parity of all subbands of all channels + * is 0 except once every 8 samples where the parity is forced to 1. */ +static int aptx_check_parity(Channel channels[NB_CHANNELS], int32_t *idx) +{ + int32_t parity = aptx_quantized_parity(&channels[LEFT]) + ^ aptx_quantized_parity(&channels[RIGHT]); + + int eighth = *idx == 7; + *idx = (*idx + 1) & 7; + + return parity ^ eighth; +} + +static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx) +{ + if (aptx_check_parity(channels, idx)) { + int i; + Channel *c; + static const int map[] = { 1, 2, 0, 3 }; + Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]]; + for (c = &channels[NB_CHANNELS-1]; c >= channels; c--) + for (i = 0; i < NB_SUBBANDS; i++) + if (c->quantize[map[i]].error < min->error) + min = &c->quantize[map[i]]; + + /* Forcing the desired parity is done by offsetting by 1 the quantized + * sample from the subband featuring the smallest quantization error. */ + min->quantized_sample = min->quantized_sample_parity_change; + } +} + +static uint16_t aptx_pack_codeword(Channel *channel) +{ + int32_t parity = aptx_quantized_parity(channel); + return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13) + | (((channel->quantize[2].quantized_sample & 0x03) ) << 11) + | (((channel->quantize[1].quantized_sample & 0x0F) ) << 7) + | (((channel->quantize[0].quantized_sample & 0x7F) ) << 0); +} + +static void aptx_unpack_codeword(Channel *channel, uint16_t codeword) +{ + channel->quantize[0].quantized_sample = sign_extend(codeword >> 0, 7); + channel->quantize[1].quantized_sample = sign_extend(codeword >> 7, 4); + channel->quantize[2].quantized_sample = sign_extend(codeword >> 11, 2); + channel->quantize[3].quantized_sample = sign_extend(codeword >> 13, 3); + channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1) + | aptx_quantized_parity(channel); +} + +static void aptx_encode_samples(AptXContext *ctx, + int32_t samples[NB_CHANNELS][4], + uint8_t output[2*NB_CHANNELS]) +{ + int channel; + for (channel = 0; channel < NB_CHANNELS; channel++) + aptx_encode_channel(&ctx->channels[channel], samples[channel]); + + aptx_insert_sync(ctx->channels, &ctx->sync_idx); + + for (channel = 0; channel < NB_CHANNELS; channel++) { + aptx_invert_quantize_and_prediction(&ctx->channels[channel]); + AV_WB16(output + 2*channel, aptx_pack_codeword(&ctx->channels[channel])); + } +} + +static int aptx_decode_samples(AptXContext *ctx, + const uint8_t input[2*NB_CHANNELS], + int32_t samples[NB_CHANNELS][4]) +{ + int channel, ret; + + for (channel = 0; channel < NB_CHANNELS; channel++) { + uint16_t codeword; + aptx_generate_dither(&ctx->channels[channel]); + + codeword = AV_RB16(input + 2*channel); + aptx_unpack_codeword(&ctx->channels[channel], codeword); + aptx_invert_quantize_and_prediction(&ctx->channels[channel]); + } + + ret = aptx_check_parity(ctx->channels, &ctx->sync_idx); + + for (channel = 0; channel < NB_CHANNELS; channel++) + aptx_decode_channel(&ctx->channels[channel], samples[channel]); + + return ret; +} + + +static av_cold int aptx_init(AVCodecContext *avctx) +{ + AptXContext *s = avctx->priv_data; + int chan, subband; + + if (avctx->frame_size == 0) + avctx->frame_size = 1024; + + if (avctx->frame_size & 3) { + av_log(avctx, AV_LOG_ERROR, "Frame size must be a multiple of 4 samples\n"); + return AVERROR(EINVAL); + } + + for (chan = 0; chan < NB_CHANNELS; chan++) { + Channel *channel = &s->channels[chan]; + for (subband = 0; subband < NB_SUBBANDS; subband++) { + Prediction *prediction = &channel->prediction[subband]; + prediction->prev_sign[0] = 1; + prediction->prev_sign[1] = 1; + } + } + + ff_af_queue_init(avctx, &s->afq); + return 0; +} + +static int aptx_decode_frame(AVCodecContext *avctx, void *data, + int *got_frame_ptr, AVPacket *avpkt) +{ + AptXContext *s = avctx->priv_data; + AVFrame *frame = data; + int pos, channel, sample, ret; + + if (avpkt->size < 4) { + av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); + return AVERROR_INVALIDDATA; + } + + /* get output buffer */ + frame->channels = NB_CHANNELS; + frame->format = AV_SAMPLE_FMT_S32P; + frame->nb_samples = avpkt->size & ~3; + if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) + return ret; + + for (pos = 0; pos < frame->nb_samples; pos += 4) { + int32_t samples[NB_CHANNELS][4]; + + if (aptx_decode_samples(s, &avpkt->data[pos], samples)) { + av_log(avctx, AV_LOG_ERROR, "Synchronization error\n"); + return AVERROR_INVALIDDATA; + } + + for (channel = 0; channel < NB_CHANNELS; channel++) + for (sample = 0; sample < 4; sample++) + AV_WN32A(&frame->data[channel][4*(sample+pos)], + samples[channel][sample] << 8); + } + + *got_frame_ptr = 1; + return frame->nb_samples; +} + +static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, + const AVFrame *frame, int *got_packet_ptr) +{ + AptXContext *s = avctx->priv_data; + int pos, channel, sample, ret; + + if ((ret = ff_af_queue_add(&s->afq, frame)) < 0) + return ret; + + if ((ret = ff_alloc_packet2(avctx, avpkt, frame->nb_samples, 0)) < 0) + return ret; + + for (pos = 0; pos < frame->nb_samples; pos += 4) { + int32_t samples[NB_CHANNELS][4]; + + for (channel = 0; channel < NB_CHANNELS; channel++) + for (sample = 0; sample < 4; sample++) + samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(sample+pos)]) >> 8; + + aptx_encode_samples(s, samples, avpkt->data + pos); + } + + ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration); + *got_packet_ptr = 1; + return 0; +} + +static av_cold int aptx_close(AVCodecContext *avctx) +{ + AptXContext *s = avctx->priv_data; + ff_af_queue_close(&s->afq); + return 0; +} + + +#if CONFIG_APTX_DECODER +AVCodec ff_aptx_decoder = { + .name = "aptx", + .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"), + .type = AVMEDIA_TYPE_AUDIO, + .id = AV_CODEC_ID_APTX, + .priv_data_size = sizeof(AptXContext), + .init = aptx_init, + .decode = aptx_decode_frame, + .close = aptx_close, + .capabilities = AV_CODEC_CAP_DR1, + .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, + .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, + AV_SAMPLE_FMT_NONE }, +}; +#endif + +#if CONFIG_APTX_ENCODER +AVCodec ff_aptx_encoder = { + .name = "aptx", + .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"), + .type = AVMEDIA_TYPE_AUDIO, + .id = AV_CODEC_ID_APTX, + .priv_data_size = sizeof(AptXContext), + .init = aptx_init, + .encode2 = aptx_encode_frame, + .close = aptx_close, + .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, + .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, + AV_SAMPLE_FMT_NONE }, + .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0}, +}; +#endif diff --git a/libavcodec/avcodec.h b/libavcodec/avcodec.h index c4134424f0..429d62a60a 100644 --- a/libavcodec/avcodec.h +++ b/libavcodec/avcodec.h @@ -632,6 +632,7 @@ enum AVCodecID { AV_CODEC_ID_ATRAC3AL, AV_CODEC_ID_ATRAC3PAL, AV_CODEC_ID_DOLBY_E, + AV_CODEC_ID_APTX, /* subtitle codecs */ AV_CODEC_ID_FIRST_SUBTITLE = 0x17000, ///< A dummy ID pointing at the start of subtitle codecs. diff --git a/libavcodec/codec_desc.c b/libavcodec/codec_desc.c index 92bf1d2681..c3688de1d6 100644 --- a/libavcodec/codec_desc.c +++ b/libavcodec/codec_desc.c @@ -2859,6 +2859,13 @@ static const AVCodecDescriptor codec_descriptors[] = { .long_name = NULL_IF_CONFIG_SMALL("ADPCM MTAF"), .props = AV_CODEC_PROP_LOSSY, }, + { + .id = AV_CODEC_ID_APTX, + .type = AVMEDIA_TYPE_AUDIO, + .name = "aptx", + .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"), + .props = AV_CODEC_PROP_LOSSY, + }, /* subtitle codecs */ {