1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

lavfi: add filter dnn_detect for object detection

Below are the example steps to do object detection:

1. download and install l_openvino_toolkit_p_2021.1.110.tgz from
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html
  or, we can get source code (tag 2021.1), build and install.
2. export LD_LIBRARY_PATH with openvino settings, for example:
.../deployment_tools/inference_engine/lib/intel64/:.../deployment_tools/inference_engine/external/tbb/lib/
3. rebuild ffmpeg from source code with configure option:
--enable-libopenvino
--extra-cflags='-I.../deployment_tools/inference_engine/include/'
--extra-ldflags='-L.../deployment_tools/inference_engine/lib/intel64'
4. download model files and test image
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.bin
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.xml
wget
https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.label
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/images/cici.jpg
5. run ffmpeg with:
./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,showinfo -f null -

We'll see the detect result as below:
[Parsed_showinfo_1 @ 0x560c21ecbe40]   side data - detection bounding boxes:
[Parsed_showinfo_1 @ 0x560c21ecbe40] source: face-detection-adas-0001.xml
[Parsed_showinfo_1 @ 0x560c21ecbe40] index: 0,  region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000.
[Parsed_showinfo_1 @ 0x560c21ecbe40] index: 1,  region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000.

There are two faces detected with confidence 100% and 69.17%.

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
Guo, Yejun 2021-02-07 14:36:13 +08:00
parent e942b4bbaa
commit aa9ffdaa1e
5 changed files with 464 additions and 0 deletions

1
configure vendored
View File

@ -3555,6 +3555,7 @@ derain_filter_select="dnn"
deshake_filter_select="pixelutils" deshake_filter_select="pixelutils"
deshake_opencl_filter_deps="opencl" deshake_opencl_filter_deps="opencl"
dilation_opencl_filter_deps="opencl" dilation_opencl_filter_deps="opencl"
dnn_detect_filter_select="dnn"
dnn_processing_filter_select="dnn" dnn_processing_filter_select="dnn"
drawtext_filter_deps="libfreetype" drawtext_filter_deps="libfreetype"
drawtext_filter_suggest="libfontconfig libfribidi" drawtext_filter_suggest="libfontconfig libfribidi"

View File

@ -10127,6 +10127,46 @@ ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2
@end example @end example
@end itemize @end itemize
@section dnn_detect
Do object detection with deep neural networks.
The filter accepts the following options:
@table @option
@item dnn_backend
Specify which DNN backend to use for model loading and execution. This option accepts
only openvino now, tensorflow backends will be added.
@item model
Set path to model file specifying network architecture and its parameters.
Note that different backends use different file formats.
@item input
Set the input name of the dnn network.
@item output
Set the output name of the dnn network.
@item confidence
Set the confidence threshold (default: 0.5).
@item labels
Set path to label file specifying the mapping between label id and name.
Each label name is written in one line, tailing spaces and empty lines are skipped.
The first line is the name of label id 0 (usually it is 'background'),
and the second line is the name of label id 1, etc.
The label id is considered as name if the label file is not provided.
@item backend_configs
Set the configs to be passed into backend
@item async
use DNN async execution if set (default: set),
roll back to sync execution if the backend does not support async.
@end table
@anchor{dnn_processing} @anchor{dnn_processing}
@section dnn_processing @section dnn_processing

View File

@ -245,6 +245,7 @@ OBJS-$(CONFIG_DILATION_FILTER) += vf_neighbor.o
OBJS-$(CONFIG_DILATION_OPENCL_FILTER) += vf_neighbor_opencl.o opencl.o \ OBJS-$(CONFIG_DILATION_OPENCL_FILTER) += vf_neighbor_opencl.o opencl.o \
opencl/neighbor.o opencl/neighbor.o
OBJS-$(CONFIG_DISPLACE_FILTER) += vf_displace.o framesync.o OBJS-$(CONFIG_DISPLACE_FILTER) += vf_displace.o framesync.o
OBJS-$(CONFIG_DNN_DETECT_FILTER) += vf_dnn_detect.o
OBJS-$(CONFIG_DNN_PROCESSING_FILTER) += vf_dnn_processing.o OBJS-$(CONFIG_DNN_PROCESSING_FILTER) += vf_dnn_processing.o
OBJS-$(CONFIG_DOUBLEWEAVE_FILTER) += vf_weave.o OBJS-$(CONFIG_DOUBLEWEAVE_FILTER) += vf_weave.o
OBJS-$(CONFIG_DRAWBOX_FILTER) += vf_drawbox.o OBJS-$(CONFIG_DRAWBOX_FILTER) += vf_drawbox.o

View File

@ -230,6 +230,7 @@ extern AVFilter ff_vf_detelecine;
extern AVFilter ff_vf_dilation; extern AVFilter ff_vf_dilation;
extern AVFilter ff_vf_dilation_opencl; extern AVFilter ff_vf_dilation_opencl;
extern AVFilter ff_vf_displace; extern AVFilter ff_vf_displace;
extern AVFilter ff_vf_dnn_detect;
extern AVFilter ff_vf_dnn_processing; extern AVFilter ff_vf_dnn_processing;
extern AVFilter ff_vf_doubleweave; extern AVFilter ff_vf_doubleweave;
extern AVFilter ff_vf_drawbox; extern AVFilter ff_vf_drawbox;

421
libavfilter/vf_dnn_detect.c Normal file
View File

@ -0,0 +1,421 @@
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* implementing an object detecting filter using deep learning networks.
*/
#include "libavformat/avio.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "filters.h"
#include "dnn_filter_common.h"
#include "formats.h"
#include "internal.h"
#include "libavutil/time.h"
#include "libavutil/avstring.h"
#include "libavutil/detection_bbox.h"
typedef struct DnnDetectContext {
const AVClass *class;
DnnContext dnnctx;
float confidence;
char *labels_filename;
char **labels;
int label_count;
} DnnDetectContext;
#define OFFSET(x) offsetof(DnnDetectContext, dnnctx.x)
#define OFFSET2(x) offsetof(DnnDetectContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption dnn_detect_options[] = {
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" },
#if (CONFIG_LIBOPENVINO == 1)
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 2 }, 0, 0, FLAGS, "backend" },
#endif
DNN_COMMON_OPTIONS
{ "confidence", "threshold of confidence", OFFSET2(confidence), AV_OPT_TYPE_FLOAT, { .dbl = 0.5 }, 0, 1, FLAGS},
{ "labels", "path to labels file", OFFSET2(labels_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(dnn_detect);
static int dnn_detect_post_proc(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx)
{
DnnDetectContext *ctx = filter_ctx->priv;
float conf_threshold = ctx->confidence;
int proposal_count = output->height;
int detect_size = output->width;
float *detections = output->data;
int nb_bboxes = 0;
AVFrameSideData *sd;
AVDetectionBBox *bbox;
AVDetectionBBoxHeader *header;
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
if (sd) {
av_log(filter_ctx, AV_LOG_ERROR, "already have bounding boxes in side data.\n");
return -1;
}
for (int i = 0; i < proposal_count; ++i) {
float conf = detections[i * detect_size + 2];
if (conf < conf_threshold) {
continue;
}
nb_bboxes++;
}
if (nb_bboxes == 0) {
av_log(filter_ctx, AV_LOG_VERBOSE, "nothing detected in this frame.\n");
return 0;
}
header = av_detection_bbox_create_side_data(frame, nb_bboxes);
if (!header) {
av_log(filter_ctx, AV_LOG_ERROR, "failed to create side data with %d bounding boxes\n", nb_bboxes);
return -1;
}
av_strlcpy(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
for (int i = 0; i < proposal_count; ++i) {
int av_unused image_id = (int)detections[i * detect_size + 0];
int label_id = (int)detections[i * detect_size + 1];
float conf = detections[i * detect_size + 2];
float x0 = detections[i * detect_size + 3];
float y0 = detections[i * detect_size + 4];
float x1 = detections[i * detect_size + 5];
float y1 = detections[i * detect_size + 6];
bbox = av_get_detection_bbox(header, i);
if (conf < conf_threshold) {
continue;
}
bbox->x = (int)(x0 * frame->width);
bbox->w = (int)(x1 * frame->width) - bbox->x;
bbox->y = (int)(y0 * frame->height);
bbox->h = (int)(y1 * frame->height) - bbox->y;
bbox->detect_confidence = av_make_q((int)(conf * 10000), 10000);
bbox->classify_count = 0;
if (ctx->labels && label_id < ctx->label_count) {
av_strlcpy(bbox->detect_label, ctx->labels[label_id], sizeof(bbox->detect_label));
} else {
snprintf(bbox->detect_label, sizeof(bbox->detect_label), "%d", label_id);
}
nb_bboxes--;
if (nb_bboxes == 0) {
break;
}
}
return 0;
}
static void free_detect_labels(DnnDetectContext *ctx)
{
for (int i = 0; i < ctx->label_count; i++) {
av_freep(&ctx->labels[i]);
}
ctx->label_count = 0;
av_freep(&ctx->labels);
}
static int read_detect_label_file(AVFilterContext *context)
{
int line_len;
FILE *file;
DnnDetectContext *ctx = context->priv;
file = av_fopen_utf8(ctx->labels_filename, "r");
if (!file){
av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename);
return AVERROR(EINVAL);
}
while (!feof(file)) {
char *label;
char buf[256];
if (!fgets(buf, 256, file)) {
break;
}
line_len = strlen(buf);
while (line_len) {
int i = line_len - 1;
if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') {
buf[i] = '\0';
line_len--;
} else {
break;
}
}
if (line_len == 0) // empty line
continue;
if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) {
av_log(context, AV_LOG_ERROR, "label %s too long\n", buf);
fclose(file);
return AVERROR(EINVAL);
}
label = av_strdup(buf);
if (!label) {
av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf);
fclose(file);
return AVERROR(ENOMEM);
}
if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) {
av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n");
fclose(file);
av_freep(&label);
return AVERROR(ENOMEM);
}
}
fclose(file);
return 0;
}
static av_cold int dnn_detect_init(AVFilterContext *context)
{
DnnDetectContext *ctx = context->priv;
int ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_DETECT, context);
if (ret < 0)
return ret;
ff_dnn_set_detect_post_proc(&ctx->dnnctx, dnn_detect_post_proc);
if (ctx->labels_filename) {
return read_detect_label_file(context);
}
return 0;
}
static int dnn_detect_query_formats(AVFilterContext *context)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_NV12,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
return ff_set_common_formats(context, fmts_list);
}
static int dnn_detect_filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *context = inlink->dst;
AVFilterLink *outlink = context->outputs[0];
DnnDetectContext *ctx = context->priv;
DNNReturnType dnn_result;
dnn_result = ff_dnn_execute_model(&ctx->dnnctx, in, in);
if (dnn_result != DNN_SUCCESS){
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
av_frame_free(&in);
return AVERROR(EIO);
}
return ff_filter_frame(outlink, in);
}
static int dnn_detect_activate_sync(AVFilterContext *filter_ctx)
{
AVFilterLink *inlink = filter_ctx->inputs[0];
AVFilterLink *outlink = filter_ctx->outputs[0];
AVFrame *in = NULL;
int64_t pts;
int ret, status;
int got_frame = 0;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
do {
// drain all input frames
ret = ff_inlink_consume_frame(inlink, &in);
if (ret < 0)
return ret;
if (ret > 0) {
ret = dnn_detect_filter_frame(inlink, in);
if (ret < 0)
return ret;
got_frame = 1;
}
} while (ret > 0);
// if frame got, schedule to next filter
if (got_frame)
return 0;
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF) {
ff_outlink_set_status(outlink, status, pts);
return ret;
}
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static int dnn_detect_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts)
{
DnnDetectContext *ctx = outlink->src->priv;
int ret;
DNNAsyncStatusType async_state;
ret = ff_dnn_flush(&ctx->dnnctx);
if (ret != DNN_SUCCESS) {
return -1;
}
do {
AVFrame *in_frame = NULL;
AVFrame *out_frame = NULL;
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
if (out_frame) {
av_assert0(in_frame == out_frame);
ret = ff_filter_frame(outlink, out_frame);
if (ret < 0)
return ret;
if (out_pts)
*out_pts = out_frame->pts + pts;
}
av_usleep(5000);
} while (async_state >= DAST_NOT_READY);
return 0;
}
static int dnn_detect_activate_async(AVFilterContext *filter_ctx)
{
AVFilterLink *inlink = filter_ctx->inputs[0];
AVFilterLink *outlink = filter_ctx->outputs[0];
DnnDetectContext *ctx = filter_ctx->priv;
AVFrame *in = NULL;
int64_t pts;
int ret, status;
int got_frame = 0;
int async_state;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
do {
// drain all input frames
ret = ff_inlink_consume_frame(inlink, &in);
if (ret < 0)
return ret;
if (ret > 0) {
if (ff_dnn_execute_model_async(&ctx->dnnctx, in, in) != DNN_SUCCESS) {
return AVERROR(EIO);
}
}
} while (ret > 0);
// drain all processed frames
do {
AVFrame *in_frame = NULL;
AVFrame *out_frame = NULL;
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
if (out_frame) {
av_assert0(in_frame == out_frame);
ret = ff_filter_frame(outlink, out_frame);
if (ret < 0)
return ret;
got_frame = 1;
}
} while (async_state == DAST_SUCCESS);
// if frame got, schedule to next filter
if (got_frame)
return 0;
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF) {
int64_t out_pts = pts;
ret = dnn_detect_flush_frame(outlink, pts, &out_pts);
ff_outlink_set_status(outlink, status, out_pts);
return ret;
}
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return 0;
}
static int dnn_detect_activate(AVFilterContext *filter_ctx)
{
DnnDetectContext *ctx = filter_ctx->priv;
if (ctx->dnnctx.async)
return dnn_detect_activate_async(filter_ctx);
else
return dnn_detect_activate_sync(filter_ctx);
}
static av_cold void dnn_detect_uninit(AVFilterContext *context)
{
DnnDetectContext *ctx = context->priv;
ff_dnn_uninit(&ctx->dnnctx);
free_detect_labels(ctx);
}
static const AVFilterPad dnn_detect_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
static const AVFilterPad dnn_detect_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_dnn_detect = {
.name = "dnn_detect",
.description = NULL_IF_CONFIG_SMALL("Apply DNN detect filter to the input."),
.priv_size = sizeof(DnnDetectContext),
.init = dnn_detect_init,
.uninit = dnn_detect_uninit,
.query_formats = dnn_detect_query_formats,
.inputs = dnn_detect_inputs,
.outputs = dnn_detect_outputs,
.priv_class = &dnn_detect_class,
.activate = dnn_detect_activate,
};