You've already forked FFmpeg
mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-06-14 22:15:12 +02:00
dnn/native: add native support for dense
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
This commit is contained in:
@ -48,9 +48,9 @@ class Operand(object):
|
||||
self.used_count = self.used_count + 1
|
||||
|
||||
def __str__(self):
|
||||
return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
|
||||
return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index,
|
||||
self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
|
||||
self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
|
||||
self.dims, self.used_count)
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.index < other.index
|
||||
@ -71,8 +71,10 @@ class TFConverter:
|
||||
self.converted_nodes = set()
|
||||
self.conv2d_scope_names = set()
|
||||
self.conv2d_scopename_inputname_dict = {}
|
||||
self.dense_scope_names = set()
|
||||
self.dense_scopename_inputname_dict = {}
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4,
|
||||
'MathBinary':5, 'MathUnary':6, 'AvgPool':7}
|
||||
'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8}
|
||||
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5}
|
||||
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
|
||||
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
|
||||
@ -126,6 +128,22 @@ class TFConverter:
|
||||
return knode, bnode, dnode, anode
|
||||
|
||||
|
||||
def get_dense_params(self, dense_scope_name):
|
||||
knode = self.name_node_dict[dense_scope_name + '/kernel']
|
||||
bnode = self.name_node_dict.get(dense_scope_name + '/bias')
|
||||
# the BiasAdd name is possible be changed into the output name,
|
||||
# if activation is None, and BiasAdd.next is the last op which is Identity
|
||||
anode = None
|
||||
if bnode:
|
||||
if dense_scope_name + '/BiasAdd' in self.edges:
|
||||
anode = self.edges[dense_scope_name + '/BiasAdd'][0]
|
||||
if anode.op not in self.conv_activations:
|
||||
anode = None
|
||||
else:
|
||||
anode = None
|
||||
return knode, bnode, anode
|
||||
|
||||
|
||||
def dump_complex_conv2d_to_file(self, node, f):
|
||||
assert(node.op == 'Conv2D')
|
||||
self.layer_number = self.layer_number + 1
|
||||
@ -181,6 +199,57 @@ class TFConverter:
|
||||
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
|
||||
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||
|
||||
def dump_dense_to_file(self, node, f):
|
||||
assert(node.op == 'MatMul')
|
||||
self.layer_number = self.layer_number + 1
|
||||
self.converted_nodes.add(node.name)
|
||||
|
||||
scope_name = TFConverter.get_scope_name(node.name)
|
||||
#knode for kernel, bnode for bias, anode for activation
|
||||
knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0])
|
||||
|
||||
if bnode is not None:
|
||||
has_bias = 1
|
||||
btensor = bnode.attr['value'].tensor
|
||||
if btensor.tensor_shape.dim[0].size == 1:
|
||||
bias = struct.pack("f", btensor.float_val[0])
|
||||
else:
|
||||
bias = btensor.tensor_content
|
||||
else:
|
||||
has_bias = 0
|
||||
|
||||
if anode is not None:
|
||||
activation = anode.op
|
||||
else:
|
||||
activation = 'None'
|
||||
|
||||
ktensor = knode.attr['value'].tensor
|
||||
in_channels = ktensor.tensor_shape.dim[0].size
|
||||
out_channels = ktensor.tensor_shape.dim[1].size
|
||||
if in_channels * out_channels == 1:
|
||||
kernel = np.float32(ktensor.float_val[0])
|
||||
else:
|
||||
kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
|
||||
kernel = kernel.reshape(in_channels, out_channels)
|
||||
kernel = np.transpose(kernel, [1, 0])
|
||||
|
||||
np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f)
|
||||
kernel.tofile(f)
|
||||
if has_bias:
|
||||
f.write(bias)
|
||||
|
||||
input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]]
|
||||
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
|
||||
|
||||
if anode is not None:
|
||||
output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
|
||||
else:
|
||||
if bnode is not None:
|
||||
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
|
||||
else:
|
||||
output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT)
|
||||
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||
|
||||
|
||||
def dump_simple_conv2d_to_file(self, node, f):
|
||||
assert(node.op == 'Conv2D')
|
||||
@ -343,9 +412,19 @@ class TFConverter:
|
||||
if node.op == 'Conv2D':
|
||||
self.dump_complex_conv2d_to_file(node, f)
|
||||
continue
|
||||
if self.in_dense_scope(node.name):
|
||||
if node.op == 'MatMul':
|
||||
self.dump_dense_to_file(node, f)
|
||||
continue
|
||||
|
||||
|
||||
if node.op == 'Conv2D':
|
||||
self.dump_simple_conv2d_to_file(node, f)
|
||||
continue
|
||||
if node.name in self.output_names:
|
||||
input_name = self.id_different_scope_dict[node.name]
|
||||
if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name):
|
||||
continue
|
||||
if node.op == 'AvgPool':
|
||||
self.dump_avg_pool_to_file(node, f)
|
||||
elif node.op == 'DepthToSpace':
|
||||
@ -367,7 +446,7 @@ class TFConverter:
|
||||
np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
|
||||
f.write(operand.name.encode('utf-8'))
|
||||
np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
|
||||
np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
|
||||
np.array(operand.dims, dtype=np.uint32).tofile(f)
|
||||
|
||||
|
||||
def dump_to_file(self):
|
||||
@ -396,6 +475,7 @@ class TFConverter:
|
||||
|
||||
|
||||
def remove_identity(self):
|
||||
self.id_different_scope_dict = {}
|
||||
id_nodes = []
|
||||
id_dict = {}
|
||||
for node in self.nodes:
|
||||
@ -408,6 +488,7 @@ class TFConverter:
|
||||
self.name_node_dict[input].name = name
|
||||
self.name_node_dict[name] = self.name_node_dict[input]
|
||||
del self.name_node_dict[input]
|
||||
self.id_different_scope_dict[name] = input
|
||||
else:
|
||||
id_dict[name] = input
|
||||
|
||||
@ -449,8 +530,18 @@ class TFConverter:
|
||||
return False
|
||||
|
||||
|
||||
def generate_conv2d_scope_info(self):
|
||||
# mostly, conv2d is a sub block in graph, get the scope name
|
||||
def in_dense_scope(self, name):
|
||||
inner_scope = TFConverter.get_scope_name(name)
|
||||
if inner_scope == "":
|
||||
return False;
|
||||
for scope in self.dense_scope_names:
|
||||
index = inner_scope.find(scope)
|
||||
if index == 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
def generate_sub_block_op_scope_info(self):
|
||||
# mostly, conv2d/dense is a sub block in graph, get the scope name
|
||||
for node in self.nodes:
|
||||
if node.op == 'Conv2D':
|
||||
scope = TFConverter.get_scope_name(node.name)
|
||||
@ -461,8 +552,17 @@ class TFConverter:
|
||||
if scope + '/kernel' not in self.name_node_dict:
|
||||
continue
|
||||
self.conv2d_scope_names.add(scope)
|
||||
elif node.op == 'MatMul':
|
||||
scope = TFConverter.get_scope_name(node.name)
|
||||
# for the case tf.nn.dense is called directly
|
||||
if scope == '':
|
||||
continue
|
||||
# for the case tf.nn.dense is called within a scope
|
||||
if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict:
|
||||
continue
|
||||
self.dense_scope_names.add(scope.split('/Tensordot')[0])
|
||||
|
||||
# get the input name to the conv2d sub block
|
||||
# get the input name to the conv2d/dense sub block
|
||||
for node in self.nodes:
|
||||
scope = TFConverter.get_scope_name(node.name)
|
||||
if scope in self.conv2d_scope_names:
|
||||
@ -470,6 +570,16 @@ class TFConverter:
|
||||
for inp in node.input:
|
||||
if TFConverter.get_scope_name(inp) != scope:
|
||||
self.conv2d_scopename_inputname_dict[scope] = inp
|
||||
elif scope in self.dense_scope_names:
|
||||
if node.op == 'MatMul' or node.op == 'Shape':
|
||||
for inp in node.input:
|
||||
if TFConverter.get_scope_name(inp) != scope:
|
||||
self.dense_scopename_inputname_dict[scope] = inp
|
||||
elif scope.split('/Tensordot')[0] in self.dense_scope_names:
|
||||
if node.op == 'Transpose':
|
||||
for inp in node.input:
|
||||
if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0:
|
||||
self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp
|
||||
|
||||
|
||||
def run(self):
|
||||
@ -477,7 +587,7 @@ class TFConverter:
|
||||
self.generate_output_names()
|
||||
self.remove_identity()
|
||||
self.generate_edges()
|
||||
self.generate_conv2d_scope_info()
|
||||
self.generate_sub_block_op_scope_info()
|
||||
|
||||
if self.dump4tb:
|
||||
self.dump_for_tensorboard()
|
||||
|
Reference in New Issue
Block a user