1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

libavfilter/dnn: add layer maximum for native mode.

The reason to add this layer is that it is used by srcnn in vf_sr.
This layer is currently ignored in native mode. After this patch,
we can add multiple outputs support for native mode.

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
Guo, Yejun 2019-09-20 11:55:48 +08:00 committed by Pedro Arthur
parent ea673a0edb
commit b2683c66b2
8 changed files with 198 additions and 7 deletions

View File

@ -3,6 +3,7 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o

View File

@ -28,6 +28,7 @@
#include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layer_depth2space.h"
#include "dnn_backend_native_layer_maximum.h"
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{
@ -78,6 +79,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
LayerPadParams *pad_params;
DnnLayerMaximumParams *maximum_params;
model = av_malloc(sizeof(DNNModel));
if (!model){
@ -237,6 +239,21 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
network->layers[layer].type = MIRROR_PAD;
network->layers[layer].params = pad_params;
break;
case MAXIMUM:
maximum_params = av_malloc(sizeof(*maximum_params));
if (!maximum_params){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
maximum_params->val.u32 = avio_rl32(model_file_context);
dnn_size += 4;
network->layers[layer].type = MAXIMUM;
network->layers[layer].params = maximum_params;
network->layers[layer].input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
network->layers[layer].output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
break;
default:
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
@ -290,6 +307,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
LayerPadParams *pad_params;
DnnLayerMaximumParams *maximum_params;
if (network->layers_num <= 0 || network->operands_num <= 0)
return DNN_ERROR;
@ -313,6 +331,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
dnn_execute_layer_pad(network->operands, network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index, pad_params);
break;
case MAXIMUM:
maximum_params = (DnnLayerMaximumParams *)network->layers[layer].params;
dnn_execute_layer_maximum(network->operands, network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index, maximum_params);
break;
case INPUT:
return DNN_ERROR;
}
@ -333,10 +356,19 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
return DNN_SUCCESS;
}
int32_t calculate_operand_data_length(DnnOperand* operand)
int32_t calculate_operand_dims_count(const DnnOperand *oprd)
{
int32_t result = 1;
for (int i = 0; i < 4; ++i)
result *= oprd->dims[i];
return result;
}
int32_t calculate_operand_data_length(const DnnOperand* oprd)
{
// currently, we just support DNN_FLOAT
return operand->dims[0] * operand->dims[1] * operand->dims[2] * operand->dims[3] * sizeof(float);
return oprd->dims[0] * oprd->dims[1] * oprd->dims[2] * oprd->dims[3] * sizeof(float);
}
void ff_dnn_free_model_native(DNNModel **model)

View File

@ -30,7 +30,7 @@
#include "../dnn_interface.h"
#include "libavformat/avio.h"
typedef enum {INPUT, CONV, DEPTH_TO_SPACE, MIRROR_PAD} DNNLayerType;
typedef enum {INPUT = 0, CONV = 1, DEPTH_TO_SPACE = 2, MIRROR_PAD = 3, MAXIMUM = 4} DNNLayerType;
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_INPUT} DNNOperandType;
@ -104,6 +104,6 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
void ff_dnn_free_model_native(DNNModel **model);
int32_t calculate_operand_data_length(DnnOperand *operand);
int32_t calculate_operand_data_length(const DnnOperand *oprd);
int32_t calculate_operand_dims_count(const DnnOperand *oprd);
#endif

View File

@ -0,0 +1,54 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_maximum.h"
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const DnnLayerMaximumParams *params)
{
const DnnOperand *input = &operands[input_operand_indexes[0]];
DnnOperand *output = &operands[output_operand_index];
int dims_count;
const float *src;
float *dst;
for (int i = 0; i < 4; ++i)
output->dims[i] = input->dims[i];
output->data_type = input->data_type;
output->length = calculate_operand_data_length(output);
output->data = av_realloc(output->data, output->length);
if (!output->data)
return DNN_ERROR;
dims_count = calculate_operand_dims_count(output);
src = input->data;
dst = output->data;
for (int i = 0; i < dims_count; ++i)
dst[i] = FFMAX(src[i], params->val.y);
return 0;
}

View File

@ -0,0 +1,42 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference functions interface for native backend.
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
#include "libavformat/avio.h"
#include "dnn_backend_native.h"
typedef struct DnnLayerMaximumParams{
union {
uint32_t u32;
float y;
}val;
} DnnLayerMaximumParams;
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const DnnLayerMaximumParams *params);
#endif

View File

@ -30,6 +30,7 @@
#include "libavformat/avio.h"
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_maximum.h"
#include <tensorflow/c/c_api.h>
@ -401,6 +402,48 @@ static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
return DNN_SUCCESS;
}
static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
DnnLayerMaximumParams *params, const int layer)
{
TF_Operation *op;
TF_Tensor *tensor;
TF_OperationDescription *op_desc;
TF_Output input;
float *y;
char name_buffer[NAME_BUFFER_SIZE];
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT));
y = (float *)TF_TensorData(tensor);
*y = params->val.y;
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
return DNN_ERROR;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
return DNN_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer);
input.oper = *cur_op;
input.index = 0;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
return DNN_ERROR;
}
return DNN_SUCCESS;
}
static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename)
{
int32_t layer;
@ -471,6 +514,10 @@ static DNNReturnType load_native_model(TFModel *tf_model, const char *model_file
layer_add_res = add_pad_layer(tf_model, &op,
(LayerPadParams *)conv_network->layers[layer].params, layer);
break;
case MAXIMUM:
layer_add_res = add_maximum_layer(tf_model, &op,
(DnnLayerMaximumParams *)conv_network->layers[layer].params, layer);
break;
default:
CLEANUP_ON_ERROR(tf_model);
}

View File

@ -70,7 +70,7 @@ class TFConverter:
self.converted_nodes = set()
self.conv2d_scope_names = set()
self.conv2d_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
self.name_operand_dict = {}
@ -200,6 +200,19 @@ class TFConverter:
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_maximum_to_file(self, node, f):
assert(node.op == 'Maximum')
self.layer_number = self.layer_number + 1
ynode = self.name_node_dict[node.input[1]]
y = ynode.attr['value'].tensor.float_val[0]
np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
np.array([y], dtype=np.float32).tofile(f)
self.converted_nodes.add(node.name)
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_layers_to_file(self, f):
for node in self.nodes:
if node.name in self.converted_nodes:
@ -216,6 +229,8 @@ class TFConverter:
self.dump_depth2space_to_file(node, f)
elif node.op == 'MirrorPad':
self.dump_mirrorpad_to_file(node, f)
elif node.op == 'Maximum':
self.dump_maximum_to_file(node, f)
def dump_operands_to_file(self, f):

View File

@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
major = 0
# increase minor when we don't have to re-convert the model file
minor = 1
minor = 2