mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-13 21:28:01 +02:00
libavfilter/dnn: add layer maximum for native mode.
The reason to add this layer is that it is used by srcnn in vf_sr. This layer is currently ignored in native mode. After this patch, we can add multiple outputs support for native mode. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
parent
ea673a0edb
commit
b2683c66b2
@ -3,6 +3,7 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o
|
||||
|
||||
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
|
||||
|
||||
|
@ -28,6 +28,7 @@
|
||||
#include "dnn_backend_native_layer_pad.h"
|
||||
#include "dnn_backend_native_layer_conv2d.h"
|
||||
#include "dnn_backend_native_layer_depth2space.h"
|
||||
#include "dnn_backend_native_layer_maximum.h"
|
||||
|
||||
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
{
|
||||
@ -78,6 +79,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
DnnLayerMaximumParams *maximum_params;
|
||||
|
||||
model = av_malloc(sizeof(DNNModel));
|
||||
if (!model){
|
||||
@ -237,6 +239,21 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
network->layers[layer].type = MIRROR_PAD;
|
||||
network->layers[layer].params = pad_params;
|
||||
break;
|
||||
case MAXIMUM:
|
||||
maximum_params = av_malloc(sizeof(*maximum_params));
|
||||
if (!maximum_params){
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
}
|
||||
maximum_params->val.u32 = avio_rl32(model_file_context);
|
||||
dnn_size += 4;
|
||||
network->layers[layer].type = MAXIMUM;
|
||||
network->layers[layer].params = maximum_params;
|
||||
network->layers[layer].input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
|
||||
network->layers[layer].output_operand_index = (int32_t)avio_rl32(model_file_context);
|
||||
dnn_size += 8;
|
||||
break;
|
||||
default:
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
@ -290,6 +307,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
DnnLayerMaximumParams *maximum_params;
|
||||
|
||||
if (network->layers_num <= 0 || network->operands_num <= 0)
|
||||
return DNN_ERROR;
|
||||
@ -313,6 +331,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
dnn_execute_layer_pad(network->operands, network->layers[layer].input_operand_indexes,
|
||||
network->layers[layer].output_operand_index, pad_params);
|
||||
break;
|
||||
case MAXIMUM:
|
||||
maximum_params = (DnnLayerMaximumParams *)network->layers[layer].params;
|
||||
dnn_execute_layer_maximum(network->operands, network->layers[layer].input_operand_indexes,
|
||||
network->layers[layer].output_operand_index, maximum_params);
|
||||
break;
|
||||
case INPUT:
|
||||
return DNN_ERROR;
|
||||
}
|
||||
@ -333,10 +356,19 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t calculate_operand_data_length(DnnOperand* operand)
|
||||
int32_t calculate_operand_dims_count(const DnnOperand *oprd)
|
||||
{
|
||||
int32_t result = 1;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
result *= oprd->dims[i];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
int32_t calculate_operand_data_length(const DnnOperand* oprd)
|
||||
{
|
||||
// currently, we just support DNN_FLOAT
|
||||
return operand->dims[0] * operand->dims[1] * operand->dims[2] * operand->dims[3] * sizeof(float);
|
||||
return oprd->dims[0] * oprd->dims[1] * oprd->dims[2] * oprd->dims[3] * sizeof(float);
|
||||
}
|
||||
|
||||
void ff_dnn_free_model_native(DNNModel **model)
|
||||
|
@ -30,7 +30,7 @@
|
||||
#include "../dnn_interface.h"
|
||||
#include "libavformat/avio.h"
|
||||
|
||||
typedef enum {INPUT, CONV, DEPTH_TO_SPACE, MIRROR_PAD} DNNLayerType;
|
||||
typedef enum {INPUT = 0, CONV = 1, DEPTH_TO_SPACE = 2, MIRROR_PAD = 3, MAXIMUM = 4} DNNLayerType;
|
||||
|
||||
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_INPUT} DNNOperandType;
|
||||
|
||||
@ -104,6 +104,6 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
|
||||
void ff_dnn_free_model_native(DNNModel **model);
|
||||
|
||||
int32_t calculate_operand_data_length(DnnOperand *operand);
|
||||
|
||||
int32_t calculate_operand_data_length(const DnnOperand *oprd);
|
||||
int32_t calculate_operand_dims_count(const DnnOperand *oprd);
|
||||
#endif
|
||||
|
54
libavfilter/dnn/dnn_backend_native_layer_maximum.c
Normal file
54
libavfilter/dnn/dnn_backend_native_layer_maximum.c
Normal file
@ -0,0 +1,54 @@
|
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* DNN native backend implementation.
|
||||
*/
|
||||
|
||||
#include "dnn_backend_native.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_maximum.h"
|
||||
|
||||
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const DnnLayerMaximumParams *params)
|
||||
{
|
||||
const DnnOperand *input = &operands[input_operand_indexes[0]];
|
||||
DnnOperand *output = &operands[output_operand_index];
|
||||
int dims_count;
|
||||
const float *src;
|
||||
float *dst;
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
output->dims[i] = input->dims[i];
|
||||
|
||||
output->data_type = input->data_type;
|
||||
output->length = calculate_operand_data_length(output);
|
||||
output->data = av_realloc(output->data, output->length);
|
||||
if (!output->data)
|
||||
return DNN_ERROR;
|
||||
|
||||
dims_count = calculate_operand_dims_count(output);
|
||||
src = input->data;
|
||||
dst = output->data;
|
||||
for (int i = 0; i < dims_count; ++i)
|
||||
dst[i] = FFMAX(src[i], params->val.y);
|
||||
|
||||
return 0;
|
||||
}
|
42
libavfilter/dnn/dnn_backend_native_layer_maximum.h
Normal file
42
libavfilter/dnn/dnn_backend_native_layer_maximum.h
Normal file
@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* DNN inference functions interface for native backend.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
|
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
|
||||
|
||||
#include "libavformat/avio.h"
|
||||
#include "dnn_backend_native.h"
|
||||
|
||||
typedef struct DnnLayerMaximumParams{
|
||||
union {
|
||||
uint32_t u32;
|
||||
float y;
|
||||
}val;
|
||||
} DnnLayerMaximumParams;
|
||||
|
||||
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const DnnLayerMaximumParams *params);
|
||||
|
||||
#endif
|
@ -30,6 +30,7 @@
|
||||
#include "libavformat/avio.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_pad.h"
|
||||
#include "dnn_backend_native_layer_maximum.h"
|
||||
|
||||
#include <tensorflow/c/c_api.h>
|
||||
|
||||
@ -401,6 +402,48 @@ static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
|
||||
DnnLayerMaximumParams *params, const int layer)
|
||||
{
|
||||
TF_Operation *op;
|
||||
TF_Tensor *tensor;
|
||||
TF_OperationDescription *op_desc;
|
||||
TF_Output input;
|
||||
float *y;
|
||||
|
||||
char name_buffer[NAME_BUFFER_SIZE];
|
||||
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer);
|
||||
|
||||
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
|
||||
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
|
||||
tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT));
|
||||
y = (float *)TF_TensorData(tensor);
|
||||
*y = params->val.y;
|
||||
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
op = TF_FinishOperation(op_desc, tf_model->status);
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer);
|
||||
op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer);
|
||||
input.oper = *cur_op;
|
||||
input.index = 0;
|
||||
TF_AddInput(op_desc, input);
|
||||
input.oper = op;
|
||||
TF_AddInput(op_desc, input);
|
||||
TF_SetAttrType(op_desc, "T", TF_FLOAT);
|
||||
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename)
|
||||
{
|
||||
int32_t layer;
|
||||
@ -471,6 +514,10 @@ static DNNReturnType load_native_model(TFModel *tf_model, const char *model_file
|
||||
layer_add_res = add_pad_layer(tf_model, &op,
|
||||
(LayerPadParams *)conv_network->layers[layer].params, layer);
|
||||
break;
|
||||
case MAXIMUM:
|
||||
layer_add_res = add_maximum_layer(tf_model, &op,
|
||||
(DnnLayerMaximumParams *)conv_network->layers[layer].params, layer);
|
||||
break;
|
||||
default:
|
||||
CLEANUP_ON_ERROR(tf_model);
|
||||
}
|
||||
|
@ -70,7 +70,7 @@ class TFConverter:
|
||||
self.converted_nodes = set()
|
||||
self.conv2d_scope_names = set()
|
||||
self.conv2d_scopename_inputname_dict = {}
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4}
|
||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||
self.name_operand_dict = {}
|
||||
|
||||
@ -200,6 +200,19 @@ class TFConverter:
|
||||
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||
|
||||
|
||||
def dump_maximum_to_file(self, node, f):
|
||||
assert(node.op == 'Maximum')
|
||||
self.layer_number = self.layer_number + 1
|
||||
ynode = self.name_node_dict[node.input[1]]
|
||||
y = ynode.attr['value'].tensor.float_val[0]
|
||||
np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
|
||||
np.array([y], dtype=np.float32).tofile(f)
|
||||
self.converted_nodes.add(node.name)
|
||||
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
|
||||
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
|
||||
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||
|
||||
|
||||
def dump_layers_to_file(self, f):
|
||||
for node in self.nodes:
|
||||
if node.name in self.converted_nodes:
|
||||
@ -216,6 +229,8 @@ class TFConverter:
|
||||
self.dump_depth2space_to_file(node, f)
|
||||
elif node.op == 'MirrorPad':
|
||||
self.dump_mirrorpad_to_file(node, f)
|
||||
elif node.op == 'Maximum':
|
||||
self.dump_maximum_to_file(node, f)
|
||||
|
||||
|
||||
def dump_operands_to_file(self, f):
|
||||
|
@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
|
||||
major = 0
|
||||
|
||||
# increase minor when we don't have to re-convert the model file
|
||||
minor = 1
|
||||
minor = 2
|
||||
|
Loading…
Reference in New Issue
Block a user