1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

utvideo: general cosmetics

General cosmetics, such as keeping lines under 80 characters,
fixing a couple of typos (predition -> prediction) and a
general style fix that was pointed out by Derek when I was having
my sliced multithreading patch in review by him.

Signed-off-by: Derek Buitenhuis <derek.buitenhuis@gmail.com>
This commit is contained in:
Jan Ekström 2012-04-20 13:31:26 +00:00 committed by Derek Buitenhuis
parent 7eacd70fea
commit b5c3f0b994

View File

@ -175,9 +175,10 @@ static int decode_plane(UtvideoContext *c, int plane_no,
continue;
}
memcpy(c->slice_bits, src + slice_data_start + c->slices * 4, slice_size);
memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
slice_size);
memset(c->slice_bits + slice_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
c->dsp.bswap_buf((uint32_t*)c->slice_bits, (uint32_t*)c->slice_bits,
c->dsp.bswap_buf((uint32_t *) c->slice_bits, (uint32_t *) c->slice_bits,
(slice_data_end - slice_data_start + 3) >> 2);
init_get_bits(&gb, c->slice_bits, slice_size * 8);
@ -185,7 +186,8 @@ static int decode_plane(UtvideoContext *c, int plane_no,
for (j = sstart; j < send; j++) {
for (i = 0; i < width * step; i += step) {
if (get_bits_left(&gb) <= 0) {
av_log(c->avctx, AV_LOG_ERROR, "Slice decoding ran out of bits\n");
av_log(c->avctx, AV_LOG_ERROR,
"Slice decoding ran out of bits\n");
goto fail;
}
pix = get_vlc2(&gb, vlc.table, vlc.bits, 4);
@ -202,8 +204,8 @@ static int decode_plane(UtvideoContext *c, int plane_no,
dest += stride;
}
if (get_bits_left(&gb) > 32)
av_log(c->avctx, AV_LOG_WARNING, "%d bits left after decoding slice\n",
get_bits_left(&gb));
av_log(c->avctx, AV_LOG_WARNING,
"%d bits left after decoding slice\n", get_bits_left(&gb));
}
ff_free_vlc(&vlc);
@ -216,7 +218,8 @@ fail:
static const int rgb_order[4] = { 1, 2, 0, 3 };
static void restore_rgb_planes(uint8_t *src, int step, int stride, int width, int height)
static void restore_rgb_planes(uint8_t *src, int step, int stride, int width,
int height)
{
int i, j;
uint8_t r, g, b;
@ -243,8 +246,9 @@ static void restore_median(uint8_t *src, int step, int stride,
const int cmask = ~rmode;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start;
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
bsrc = src + slice_start * stride;
@ -253,29 +257,29 @@ static void restore_median(uint8_t *src, int step, int stride,
A = bsrc[0];
for (i = step; i < width * step; i += step) {
bsrc[i] += A;
A = bsrc[i];
A = bsrc[i];
}
bsrc += stride;
if (slice_height == 1)
continue;
// second line - first element has top predition, the rest uses median
C = bsrc[-stride];
// second line - first element has top prediction, the rest uses median
C = bsrc[-stride];
bsrc[0] += C;
A = bsrc[0];
A = bsrc[0];
for (i = step; i < width * step; i += step) {
B = bsrc[i - stride];
B = bsrc[i - stride];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
C = B;
A = bsrc[i];
}
bsrc += stride;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride];
B = bsrc[i - stride];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
C = B;
A = bsrc[i];
}
bsrc += stride;
}
@ -293,67 +297,69 @@ static void restore_median_il(uint8_t *src, int step, int stride,
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~(rmode ? 3 : 1);
const int cmask = ~(rmode ? 3 : 1);
const int stride2 = stride << 1;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
slice_height >>= 1;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
A = bsrc[0];
A = bsrc[0];
for (i = step; i < width * step; i += step) {
bsrc[i] += A;
A = bsrc[i];
A = bsrc[i];
}
for (i = 0; i < width * step; i += step) {
bsrc[stride + i] += A;
A = bsrc[stride + i];
A = bsrc[stride + i];
}
bsrc += stride2;
if (slice_height == 1)
continue;
// second line - first element has top predition, the rest uses median
C = bsrc[-stride2];
// second line - first element has top prediction, the rest uses median
C = bsrc[-stride2];
bsrc[0] += C;
A = bsrc[0];
A = bsrc[0];
for (i = step; i < width * step; i += step) {
B = bsrc[i - stride2];
B = bsrc[i - stride2];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
C = B;
A = bsrc[i];
}
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride];
B = bsrc[i - stride];
bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[stride + i];
C = B;
A = bsrc[stride + i];
}
bsrc += stride2;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride2];
B = bsrc[i - stride2];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
C = B;
A = bsrc[i];
}
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride];
B = bsrc[i - stride];
bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i + stride];
C = B;
A = bsrc[i + stride];
}
bsrc += stride2;
}
}
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt)
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
@ -376,7 +382,7 @@ static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPac
ff_thread_finish_setup(avctx);
/* parse plane structure to retrieve frame flags and validate slice offsets */
/* parse plane structure to get frame flags and validate slice offsets */
bytestream2_init(&gb, buf, buf_size);
for (i = 0; i < c->planes; i++) {
plane_start[i] = gb.buffer;
@ -443,8 +449,8 @@ static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPac
break;
case PIX_FMT_YUV420P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, c->pic.data[i], 1,
c->pic.linesize[i], avctx->width >> !!i, avctx->height >> !!i,
ret = decode_plane(c, i, c->pic.data[i], 1, c->pic.linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
@ -464,8 +470,8 @@ static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPac
break;
case PIX_FMT_YUV422P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, c->pic.data[i], 1,
c->pic.linesize[i], avctx->width >> !!i, avctx->height,
ret = decode_plane(c, i, c->pic.data[i], 1, c->pic.linesize[i],
avctx->width >> !!i, avctx->height,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
@ -502,7 +508,8 @@ static av_cold int decode_init(AVCodecContext *avctx)
ff_dsputil_init(&c->dsp, avctx);
if (avctx->extradata_size < 16) {
av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d, should be at least 16\n",
av_log(avctx, AV_LOG_ERROR,
"Insufficient extradata size %d, should be at least 16\n",
avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
@ -510,7 +517,8 @@ static av_cold int decode_init(AVCodecContext *avctx)
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %X\n", AV_RB32(avctx->extradata + 4));
av_log(avctx, AV_LOG_DEBUG, "Original format %X\n",
AV_RB32(avctx->extradata + 4));
c->frame_info_size = AV_RL32(avctx->extradata + 8);
c->flags = AV_RL32(avctx->extradata + 12);