1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

avcodec/dcaenc: Initial implementation of ADPCM encoding for DCA encoder

This commit is contained in:
Daniil Cherednik 2017-02-20 23:22:51 +00:00 committed by Rostislav Pehlivanov
parent 5f928c5201
commit b8c2b9c392
10 changed files with 546 additions and 76 deletions

View File

@ -244,7 +244,8 @@ OBJS-$(CONFIG_CYUV_DECODER) += cyuv.o
OBJS-$(CONFIG_DCA_DECODER) += dcadec.o dca.o dcadata.o dcahuff.o \ OBJS-$(CONFIG_DCA_DECODER) += dcadec.o dca.o dcadata.o dcahuff.o \
dca_core.o dca_exss.o dca_xll.o dca_lbr.o \ dca_core.o dca_exss.o dca_xll.o dca_lbr.o \
dcadsp.o dcadct.o synth_filter.o dcadsp.o dcadct.o synth_filter.o
OBJS-$(CONFIG_DCA_ENCODER) += dcaenc.o dca.o dcadata.o dcahuff.o OBJS-$(CONFIG_DCA_ENCODER) += dcaenc.o dca.o dcadata.o dcahuff.o \
dcaadpcm.o
OBJS-$(CONFIG_DDS_DECODER) += dds.o OBJS-$(CONFIG_DDS_DECODER) += dds.o
OBJS-$(CONFIG_DIRAC_DECODER) += diracdec.o dirac.o diracdsp.o diractab.o \ OBJS-$(CONFIG_DIRAC_DECODER) += diracdec.o dirac.o diracdsp.o diractab.o \
dirac_arith.o dirac_dwt.o dirac_vlc.o dirac_arith.o dirac_dwt.o dirac_vlc.o

View File

@ -18,6 +18,7 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
#include "dcaadpcm.h"
#include "dcadec.h" #include "dcadec.h"
#include "dcadata.h" #include "dcadata.h"
#include "dcahuff.h" #include "dcahuff.h"
@ -670,46 +671,21 @@ static inline int extract_audio(DCACoreDecoder *s, int32_t *audio, int abits, in
return 0; return 0;
} }
static inline void dequantize(int32_t *output, const int32_t *input,
int32_t step_size, int32_t scale, int residual)
{
// Account for quantizer step size
int64_t step_scale = (int64_t)step_size * scale;
int n, shift = 0;
// Limit scale factor resolution to 22 bits
if (step_scale > (1 << 23)) {
shift = av_log2(step_scale >> 23) + 1;
step_scale >>= shift;
}
// Scale the samples
if (residual) {
for (n = 0; n < DCA_SUBBAND_SAMPLES; n++)
output[n] += clip23(norm__(input[n] * step_scale, 22 - shift));
} else {
for (n = 0; n < DCA_SUBBAND_SAMPLES; n++)
output[n] = clip23(norm__(input[n] * step_scale, 22 - shift));
}
}
static inline void inverse_adpcm(int32_t **subband_samples, static inline void inverse_adpcm(int32_t **subband_samples,
const int16_t *vq_index, const int16_t *vq_index,
const int8_t *prediction_mode, const int8_t *prediction_mode,
int sb_start, int sb_end, int sb_start, int sb_end,
int ofs, int len) int ofs, int len)
{ {
int i, j, k; int i, j;
for (i = sb_start; i < sb_end; i++) { for (i = sb_start; i < sb_end; i++) {
if (prediction_mode[i]) { if (prediction_mode[i]) {
const int16_t *coeff = ff_dca_adpcm_vb[vq_index[i]]; const int pred_id = vq_index[i];
int32_t *ptr = subband_samples[i] + ofs; int32_t *ptr = subband_samples[i] + ofs;
for (j = 0; j < len; j++) { for (j = 0; j < len; j++) {
int64_t err = 0; int32_t x = ff_dcaadpcm_predict(pred_id, ptr + j - DCA_ADPCM_COEFFS);
for (k = 0; k < DCA_ADPCM_COEFFS; k++) ptr[j] = clip23(ptr[j] + x);
err += (int64_t)ptr[j - k - 1] * coeff[k];
ptr[j] = clip23(ptr[j] + clip23(norm13(err)));
} }
} }
} }
@ -817,8 +793,8 @@ static int parse_subframe_audio(DCACoreDecoder *s, int sf, enum HeaderType heade
scale = clip23(adj * scale >> 22); scale = clip23(adj * scale >> 22);
} }
dequantize(s->subband_samples[ch][band] + ofs, ff_dca_core_dequantize(s->subband_samples[ch][band] + ofs,
audio, step_size, scale, 0); audio, step_size, scale, 0, DCA_SUBBAND_SAMPLES);
} }
} }
@ -1146,8 +1122,8 @@ static int parse_xbr_subframe(DCACoreDecoder *s, int xbr_base_ch, int xbr_nchann
else else
scale = xbr_scale_factors[ch][band][1]; scale = xbr_scale_factors[ch][band][1];
dequantize(s->subband_samples[ch][band] + ofs, ff_dca_core_dequantize(s->subband_samples[ch][band] + ofs,
audio, step_size, scale, 1); audio, step_size, scale, 1, DCA_SUBBAND_SAMPLES);
} }
} }
@ -1326,8 +1302,8 @@ static int parse_x96_subframe_audio(DCACoreDecoder *s, int sf, int xch_base, int
// Get the scale factor // Get the scale factor
scale = s->scale_factors[ch][band >> 1][band & 1]; scale = s->scale_factors[ch][band >> 1][band & 1];
dequantize(s->x96_subband_samples[ch][band] + ofs, ff_dca_core_dequantize(s->x96_subband_samples[ch][band] + ofs,
audio, step_size, scale, 0); audio, step_size, scale, 0, DCA_SUBBAND_SAMPLES);
} }
} }

View File

@ -33,6 +33,7 @@
#include "dca_exss.h" #include "dca_exss.h"
#include "dcadsp.h" #include "dcadsp.h"
#include "dcadct.h" #include "dcadct.h"
#include "dcamath.h"
#include "dcahuff.h" #include "dcahuff.h"
#include "fft.h" #include "fft.h"
#include "synth_filter.h" #include "synth_filter.h"
@ -43,7 +44,6 @@
#define DCA_SUBFRAMES 16 #define DCA_SUBFRAMES 16
#define DCA_SUBBAND_SAMPLES 8 #define DCA_SUBBAND_SAMPLES 8
#define DCA_PCMBLOCK_SAMPLES 32 #define DCA_PCMBLOCK_SAMPLES 32
#define DCA_ADPCM_COEFFS 4
#define DCA_LFE_HISTORY 8 #define DCA_LFE_HISTORY 8
#define DCA_ABITS_MAX 26 #define DCA_ABITS_MAX 26
@ -195,6 +195,29 @@ static inline int ff_dca_core_map_spkr(DCACoreDecoder *core, int spkr)
return -1; return -1;
} }
static inline void ff_dca_core_dequantize(int32_t *output, const int32_t *input,
int32_t step_size, int32_t scale, int residual, int len)
{
// Account for quantizer step size
int64_t step_scale = (int64_t)step_size * scale;
int n, shift = 0;
// Limit scale factor resolution to 22 bits
if (step_scale > (1 << 23)) {
shift = av_log2(step_scale >> 23) + 1;
step_scale >>= shift;
}
// Scale the samples
if (residual) {
for (n = 0; n < len; n++)
output[n] += clip23(norm__(input[n] * step_scale, 22 - shift));
} else {
for (n = 0; n < len; n++)
output[n] = clip23(norm__(input[n] * step_scale, 22 - shift));
}
}
int ff_dca_core_parse(DCACoreDecoder *s, uint8_t *data, int size); int ff_dca_core_parse(DCACoreDecoder *s, uint8_t *data, int size);
int ff_dca_core_parse_exss(DCACoreDecoder *s, uint8_t *data, DCAExssAsset *asset); int ff_dca_core_parse_exss(DCACoreDecoder *s, uint8_t *data, DCAExssAsset *asset);
int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth); int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth);

228
libavcodec/dcaadpcm.c Normal file
View File

@ -0,0 +1,228 @@
/*
* DCA ADPCM engine
* Copyright (C) 2017 Daniil Cherednik
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dcaadpcm.h"
#include "dcaenc.h"
#include "dca_core.h"
#include "mathops.h"
typedef int32_t premultiplied_coeffs[10];
//assume we have DCA_ADPCM_COEFFS values before x
static inline int64_t calc_corr(const int32_t *x, int len, int j, int k)
{
int n;
int64_t s = 0;
for (n = 0; n < len; n++)
s += MUL64(x[n-j], x[n-k]);
return s;
}
static inline int64_t apply_filter(const int16_t a[DCA_ADPCM_COEFFS], const int64_t corr[15], const int32_t aa[10])
{
int64_t err = 0;
int64_t tmp = 0;
err = corr[0];
tmp += MUL64(a[0], corr[1]);
tmp += MUL64(a[1], corr[2]);
tmp += MUL64(a[2], corr[3]);
tmp += MUL64(a[3], corr[4]);
tmp = norm__(tmp, 13);
tmp += tmp;
err -= tmp;
tmp = 0;
tmp += MUL64(corr[5], aa[0]);
tmp += MUL64(corr[6], aa[1]);
tmp += MUL64(corr[7], aa[2]);
tmp += MUL64(corr[8], aa[3]);
tmp += MUL64(corr[9], aa[4]);
tmp += MUL64(corr[10], aa[5]);
tmp += MUL64(corr[11], aa[6]);
tmp += MUL64(corr[12], aa[7]);
tmp += MUL64(corr[13], aa[8]);
tmp += MUL64(corr[14], aa[9]);
tmp = norm__(tmp, 26);
err += tmp;
return llabs(err);
}
static int64_t find_best_filter(const DCAADPCMEncContext *s, const int32_t *in, int len)
{
const premultiplied_coeffs *precalc_data = s->private_data;
int i, j, k = 0;
int vq;
int64_t err;
int64_t min_err = 1ll << 62;
int64_t corr[15];
for (i = 0; i <= DCA_ADPCM_COEFFS; i++)
for (j = i; j <= DCA_ADPCM_COEFFS; j++)
corr[k++] = calc_corr(in+4, len, i, j);
for (i = 0; i < DCA_ADPCM_VQCODEBOOK_SZ; i++) {
err = apply_filter(ff_dca_adpcm_vb[i], corr, *precalc_data);
if (err < min_err) {
min_err = err;
vq = i;
}
precalc_data++;
}
return vq;
}
static inline int64_t calc_prediction_gain(int pred_vq, const int32_t *in, int32_t *out, int len)
{
int i;
int32_t error;
int64_t signal_energy = 0;
int64_t error_energy = 0;
for (i = 0; i < len; i++) {
error = in[DCA_ADPCM_COEFFS + i] - ff_dcaadpcm_predict(pred_vq, in + i);
out[i] = error;
signal_energy += MUL64(in[DCA_ADPCM_COEFFS + i], in[DCA_ADPCM_COEFFS + i]);
error_energy += MUL64(error, error);
}
if (!error_energy)
return -1;
return signal_energy / error_energy;
}
int ff_dcaadpcm_subband_analysis(const DCAADPCMEncContext *s, const int32_t *in, int len, int *diff)
{
int pred_vq, i;
int32_t input_buffer[16 + DCA_ADPCM_COEFFS];
int32_t input_buffer2[16 + DCA_ADPCM_COEFFS];
int32_t max = 0;
int shift_bits;
uint64_t pg = 0;
for (i = 0; i < len + DCA_ADPCM_COEFFS; i++)
max |= FFABS(in[i]);
// normalize input to simplify apply_filter
shift_bits = av_log2(max) - 11;
for (i = 0; i < len + DCA_ADPCM_COEFFS; i++) {
input_buffer[i] = norm__(in[i], 7);
input_buffer2[i] = norm__(in[i], shift_bits);
}
pred_vq = find_best_filter(s, input_buffer2, len);
if (pred_vq < 0)
return -1;
pg = calc_prediction_gain(pred_vq, input_buffer, diff, len);
// Greater than 10db (10*log(10)) prediction gain to use ADPCM.
// TODO: Tune it.
if (pg < 10)
return -1;
for (i = 0; i < len; i++)
diff[i] <<= 7;
return pred_vq;
}
static void precalc(premultiplied_coeffs *data)
{
int i, j, k;
for (i = 0; i < DCA_ADPCM_VQCODEBOOK_SZ; i++) {
int id = 0;
int32_t t = 0;
for (j = 0; j < DCA_ADPCM_COEFFS; j++) {
for (k = j; k < DCA_ADPCM_COEFFS; k++) {
t = (int32_t)ff_dca_adpcm_vb[i][j] * (int32_t)ff_dca_adpcm_vb[i][k];
if (j != k)
t *= 2;
(*data)[id++] = t;
}
}
data++;
}
}
int ff_dcaadpcm_do_real(int pred_vq_index,
softfloat quant, int32_t scale_factor, int32_t step_size,
const int32_t *prev_hist, const int32_t *in, int32_t *next_hist, int32_t *out,
int len, int32_t peak)
{
int i;
int64_t delta;
int32_t dequant_delta;
int32_t work_bufer[16 + DCA_ADPCM_COEFFS];
memcpy(work_bufer, prev_hist, sizeof(int32_t) * DCA_ADPCM_COEFFS);
for (i = 0; i < len; i++) {
work_bufer[DCA_ADPCM_COEFFS + i] = ff_dcaadpcm_predict(pred_vq_index, &work_bufer[i]);
delta = (int64_t)in[i] - ((int64_t)work_bufer[DCA_ADPCM_COEFFS + i] << 7);
out[i] = quantize_value(av_clip64(delta, -peak, peak), quant);
ff_dca_core_dequantize(&dequant_delta, &out[i], step_size, scale_factor, 0, 1);
work_bufer[DCA_ADPCM_COEFFS+i] += dequant_delta;
}
memcpy(next_hist, &work_bufer[len], sizeof(int32_t) * DCA_ADPCM_COEFFS);
return 0;
}
av_cold int ff_dcaadpcm_init(DCAADPCMEncContext *s)
{
if (!s)
return -1;
s->private_data = av_malloc(sizeof(premultiplied_coeffs) * DCA_ADPCM_VQCODEBOOK_SZ);
precalc(s->private_data);
return 0;
}
av_cold void ff_dcaadpcm_free(DCAADPCMEncContext *s)
{
if (!s)
return;
av_freep(&s->private_data);
}

54
libavcodec/dcaadpcm.h Normal file
View File

@ -0,0 +1,54 @@
/*
* DCA ADPCM engine
* Copyright (C) 2017 Daniil Cherednik
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_DCAADPCM_H
#define AVCODEC_DCAADPCM_H
#include "dcamath.h"
#include "dcadata.h"
#include "dcaenc.h"
typedef struct DCAADPCMEncContext {
void *private_data;
} DCAADPCMEncContext;
static inline int64_t ff_dcaadpcm_predict(int pred_vq_index, const int32_t *input)
{
int i;
const int16_t *coeff = ff_dca_adpcm_vb[pred_vq_index];
int64_t pred = 0;
for (i = 0; i < DCA_ADPCM_COEFFS; i++)
pred += (int64_t)input[DCA_ADPCM_COEFFS - 1 - i] * coeff[i];
return clip23(norm13(pred));
}
int ff_dcaadpcm_subband_analysis(const DCAADPCMEncContext *s, const int32_t *input, int len, int *diff);
int ff_dcaadpcm_do_real(int pred_vq_index,
softfloat quant, int32_t scale_factor, int32_t step_size,
const int32_t *prev_hist, const int32_t *in, int32_t *next_hist, int32_t *out,
int len, int32_t peak);
av_cold int ff_dcaadpcm_init(DCAADPCMEncContext *s);
av_cold void ff_dcaadpcm_free(DCAADPCMEncContext *s);
#endif /* AVCODEC_DCAADPCM_H */

View File

@ -61,7 +61,7 @@ const uint8_t ff_dca_quant_index_group_size[DCA_CODE_BOOKS] = {
/* ADPCM data */ /* ADPCM data */
/* 16 bits signed fractional Q13 binary codes */ /* 16 bits signed fractional Q13 binary codes */
const int16_t ff_dca_adpcm_vb[4096][4] = { const int16_t ff_dca_adpcm_vb[DCA_ADPCM_VQCODEBOOK_SZ][DCA_ADPCM_COEFFS] = {
{ 9928, -2618, -1093, -1263 }, { 9928, -2618, -1093, -1263 },
{ 11077, -2876, -1747, -308 }, { 11077, -2876, -1747, -308 },
{ 10503, -1082, -1426, -1167 }, { 10503, -1082, -1426, -1167 },

View File

@ -25,6 +25,9 @@
#include "dcahuff.h" #include "dcahuff.h"
#define DCA_ADPCM_COEFFS 4
#define DCA_ADPCM_VQCODEBOOK_SZ 4096
extern const uint32_t ff_dca_bit_rates[32]; extern const uint32_t ff_dca_bit_rates[32];
extern const uint8_t ff_dca_channels[16]; extern const uint8_t ff_dca_channels[16];
@ -36,7 +39,7 @@ extern const uint8_t ff_dca_dmix_primary_nch[8];
extern const uint8_t ff_dca_quant_index_sel_nbits[DCA_CODE_BOOKS]; extern const uint8_t ff_dca_quant_index_sel_nbits[DCA_CODE_BOOKS];
extern const uint8_t ff_dca_quant_index_group_size[DCA_CODE_BOOKS]; extern const uint8_t ff_dca_quant_index_group_size[DCA_CODE_BOOKS];
extern const int16_t ff_dca_adpcm_vb[4096][4]; extern const int16_t ff_dca_adpcm_vb[DCA_ADPCM_VQCODEBOOK_SZ][DCA_ADPCM_COEFFS];
extern const uint32_t ff_dca_scale_factor_quant6[64]; extern const uint32_t ff_dca_scale_factor_quant6[64];
extern const uint32_t ff_dca_scale_factor_quant7[128]; extern const uint32_t ff_dca_scale_factor_quant7[128];

View File

@ -25,8 +25,12 @@
#include "libavutil/channel_layout.h" #include "libavutil/channel_layout.h"
#include "libavutil/common.h" #include "libavutil/common.h"
#include "libavutil/ffmath.h" #include "libavutil/ffmath.h"
#include "libavutil/opt.h"
#include "avcodec.h" #include "avcodec.h"
#include "dca.h" #include "dca.h"
#include "dcaadpcm.h"
#include "dcamath.h"
#include "dca_core.h"
#include "dcadata.h" #include "dcadata.h"
#include "dcaenc.h" #include "dcaenc.h"
#include "internal.h" #include "internal.h"
@ -44,8 +48,15 @@
#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8) #define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
#define AUBANDS 25 #define AUBANDS 25
typedef struct CompressionOptions {
int adpcm_mode;
} CompressionOptions;
typedef struct DCAEncContext { typedef struct DCAEncContext {
AVClass *class;
PutBitContext pb; PutBitContext pb;
DCAADPCMEncContext adpcm_ctx;
CompressionOptions options;
int frame_size; int frame_size;
int frame_bits; int frame_bits;
int fullband_channels; int fullband_channels;
@ -61,10 +72,13 @@ typedef struct DCAEncContext {
int32_t lfe_peak_cb; int32_t lfe_peak_cb;
const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS];
int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2];
int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */ int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
int32_t subband[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES]; int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS];
int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES]; int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES];
int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS];
int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal
int32_t downsampled_lfe[DCA_LFE_SAMPLES]; int32_t downsampled_lfe[DCA_LFE_SAMPLES];
int32_t masking_curve_cb[SUBSUBFRAMES][256]; int32_t masking_curve_cb[SUBSUBFRAMES][256];
int32_t bit_allocation_sel[MAX_CHANNELS]; int32_t bit_allocation_sel[MAX_CHANNELS];
@ -77,6 +91,7 @@ typedef struct DCAEncContext {
int32_t worst_quantization_noise; int32_t worst_quantization_noise;
int32_t worst_noise_ever; int32_t worst_noise_ever;
int consumed_bits; int consumed_bits;
int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info
} DCAEncContext; } DCAEncContext;
static int32_t cos_table[2048]; static int32_t cos_table[2048];
@ -107,18 +122,52 @@ static double gammafilter(int i, double f)
return 20 * log10(h); return 20 * log10(h);
} }
static int subband_bufer_alloc(DCAEncContext *c)
{
int ch, band;
int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS *
(SUBBAND_SAMPLES + DCA_ADPCM_COEFFS),
sizeof(int32_t));
if (!bufer)
return -1;
/* we need a place for DCA_ADPCM_COEFF samples from previous frame
* to calc prediction coefficients for each subband */
for (ch = 0; ch < MAX_CHANNELS; ch++) {
for (band = 0; band < DCAENC_SUBBANDS; band++) {
c->subband[ch][band] = bufer +
ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) +
band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS;
}
}
return 0;
}
static void subband_bufer_free(DCAEncContext *c)
{
int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS;
av_freep(&bufer);
}
static int encode_init(AVCodecContext *avctx) static int encode_init(AVCodecContext *avctx)
{ {
DCAEncContext *c = avctx->priv_data; DCAEncContext *c = avctx->priv_data;
uint64_t layout = avctx->channel_layout; uint64_t layout = avctx->channel_layout;
int i, j, min_frame_bits; int i, j, min_frame_bits;
if (subband_bufer_alloc(c))
return AVERROR(ENOMEM);
c->fullband_channels = c->channels = avctx->channels; c->fullband_channels = c->channels = avctx->channels;
c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6); c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
c->band_interpolation = band_interpolation[1]; c->band_interpolation = band_interpolation[1];
c->band_spectrum = band_spectrum[1]; c->band_spectrum = band_spectrum[1];
c->worst_quantization_noise = -2047; c->worst_quantization_noise = -2047;
c->worst_noise_ever = -2047; c->worst_noise_ever = -2047;
c->consumed_adpcm_bits = 0;
if (ff_dcaadpcm_init(&c->adpcm_ctx))
return AVERROR(ENOMEM);
if (!layout) { if (!layout) {
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
@ -150,6 +199,12 @@ static int encode_init(AVCodecContext *avctx)
} }
/* 6 - no Huffman */ /* 6 - no Huffman */
c->bit_allocation_sel[i] = 6; c->bit_allocation_sel[i] = 6;
for (j = 0; j < DCAENC_SUBBANDS; j++) {
/* -1 - no ADPCM */
c->prediction_mode[i][j] = -1;
memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS);
}
} }
for (i = 0; i < 9; i++) { for (i = 0; i < 9; i++) {
@ -238,6 +293,16 @@ static int encode_init(AVCodecContext *avctx)
return 0; return 0;
} }
static av_cold int encode_close(AVCodecContext *avctx)
{
if (avctx->priv_data) {
DCAEncContext *c = avctx->priv_data;
subband_bufer_free(c);
ff_dcaadpcm_free(&c->adpcm_ctx);
}
return 0;
}
static inline int32_t cos_t(int x) static inline int32_t cos_t(int x)
{ {
return cos_table[x & 2047]; return cos_table[x & 2047];
@ -253,12 +318,6 @@ static inline int32_t half32(int32_t a)
return (a + 1) >> 1; return (a + 1) >> 1;
} }
static inline int32_t mul32(int32_t a, int32_t b)
{
int64_t r = (int64_t)a * b + 0x80000000ULL;
return r >> 32;
}
static void subband_transform(DCAEncContext *c, const int32_t *input) static void subband_transform(DCAEncContext *c, const int32_t *input)
{ {
int ch, subs, i, k, j; int ch, subs, i, k, j;
@ -545,31 +604,53 @@ static void calc_masking(DCAEncContext *c, const int32_t *input)
} }
} }
static inline int32_t find_peak(const int32_t *in, int len) {
int sample;
int32_t m = 0;
for (sample = 0; sample < len; sample++) {
int32_t s = abs(in[sample]);
if (m < s) {
m = s;
}
}
return get_cb(m);
}
static void find_peaks(DCAEncContext *c) static void find_peaks(DCAEncContext *c)
{ {
int band, ch; int band, ch;
for (ch = 0; ch < c->fullband_channels; ch++) for (ch = 0; ch < c->fullband_channels; ch++) {
for (band = 0; band < 32; band++) { for (band = 0; band < 32; band++) {
int sample; c->peak_cb[ch][band] = find_peak(c->subband[ch][band], SUBBAND_SAMPLES);
int32_t m = 0;
for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
int32_t s = abs(c->subband[ch][band][sample]);
if (m < s)
m = s;
} }
c->peak_cb[ch][band] = get_cb(m);
} }
if (c->lfe_channel) { if (c->lfe_channel) {
int sample; c->lfe_peak_cb = find_peak(c->downsampled_lfe, DCA_LFE_SAMPLES);
int32_t m = 0; }
}
for (sample = 0; sample < DCA_LFE_SAMPLES; sample++) static void adpcm_analysis(DCAEncContext *c)
if (m < abs(c->downsampled_lfe[sample])) {
m = abs(c->downsampled_lfe[sample]); int ch, band;
c->lfe_peak_cb = get_cb(m); int pred_vq_id;
int32_t *samples;
int32_t estimated_diff[SUBBAND_SAMPLES];
c->consumed_adpcm_bits = 0;
for (ch = 0; ch < c->fullband_channels; ch++) {
for (band = 0; band < 32; band++) {
samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples, SUBBAND_SAMPLES, estimated_diff);
if (pred_vq_id >= 0) {
c->prediction_mode[ch][band] = pred_vq_id;
c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index
c->diff_peak_cb[ch][band] = find_peak(estimated_diff, 16);
} else {
c->prediction_mode[ch][band] = -1;
}
}
} }
} }
@ -578,13 +659,16 @@ static const int snr_fudge = 128;
#define USED_NABITS 2 #define USED_NABITS 2
#define USED_26ABITS 4 #define USED_26ABITS 4
static int32_t quantize_value(int32_t value, softfloat quant) static inline int32_t get_step_size(const DCAEncContext *c, int ch, int band)
{ {
int32_t offset = 1 << (quant.e - 1); int32_t step_size;
value = mul32(value, quant.m) + offset; if (c->bitrate_index == 3)
value = value >> quant.e; step_size = ff_dca_lossless_quant[c->abits[ch][band]];
return value; else
step_size = ff_dca_lossy_quant[c->abits[ch][band]];
return step_size;
} }
static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant) static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
@ -619,12 +703,38 @@ static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
return our_nscale; return our_nscale;
} }
static void quantize_all(DCAEncContext *c) static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
{
int32_t step_size;
int32_t diff_peak_cb = c->diff_peak_cb[ch][band];
c->scale_factor[ch][band] = calc_one_scale(diff_peak_cb,
c->abits[ch][band],
&c->quant[ch][band]);
step_size = get_step_size(c, ch, band);
ff_dcaadpcm_do_real(c->prediction_mode[ch][band],
c->quant[ch][band], ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], step_size,
c->adpcm_history[ch][band], c->subband[ch][band], c->adpcm_history[ch][band]+4, c->quantized[ch][band],
SUBBAND_SAMPLES, cb_to_level[-diff_peak_cb]);
}
static void quantize_adpcm(DCAEncContext *c)
{
int band, ch;
for (ch = 0; ch < c->fullband_channels; ch++)
for (band = 0; band < 32; band++)
if (c->prediction_mode[ch][band] >= 0)
quantize_adpcm_subband(c, ch, band);
}
static void quantize_pcm(DCAEncContext *c)
{ {
int sample, band, ch; int sample, band, ch;
for (ch = 0; ch < c->fullband_channels; ch++) for (ch = 0; ch < c->fullband_channels; ch++)
for (band = 0; band < 32; band++) for (band = 0; band < 32; band++)
if (c->prediction_mode[ch][band] == -1)
for (sample = 0; sample < SUBBAND_SAMPLES; sample++) for (sample = 0; sample < SUBBAND_SAMPLES; sample++)
c->quantized[ch][band][sample] = quantize_value(c->subband[ch][band][sample], c->quant[ch][band]); c->quantized[ch][band][sample] = quantize_value(c->subband[ch][band][sample], c->quant[ch][band]);
} }
@ -710,6 +820,7 @@ static int init_quantization_noise(DCAEncContext *c, int noise)
uint32_t bits_counter = 0; uint32_t bits_counter = 0;
c->consumed_bits = 132 + 333 * c->fullband_channels; c->consumed_bits = 132 + 333 * c->fullband_channels;
c->consumed_bits += c->consumed_adpcm_bits;
if (c->lfe_channel) if (c->lfe_channel)
c->consumed_bits += 72; c->consumed_bits += 72;
@ -740,12 +851,15 @@ static int init_quantization_noise(DCAEncContext *c, int noise)
/* TODO: May be cache scaled values */ /* TODO: May be cache scaled values */
for (ch = 0; ch < c->fullband_channels; ch++) { for (ch = 0; ch < c->fullband_channels; ch++) {
for (band = 0; band < 32; band++) { for (band = 0; band < 32; band++) {
if (c->prediction_mode[ch][band] == -1) {
c->scale_factor[ch][band] = calc_one_scale(c->peak_cb[ch][band], c->scale_factor[ch][band] = calc_one_scale(c->peak_cb[ch][band],
c->abits[ch][band], c->abits[ch][band],
&c->quant[ch][band]); &c->quant[ch][band]);
} }
} }
quantize_all(c); }
quantize_adpcm(c);
quantize_pcm(c);
memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t)); memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t));
memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t)); memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t));
@ -819,6 +933,41 @@ static void shift_history(DCAEncContext *c, const int32_t *input)
} }
} }
static void fill_in_adpcm_bufer(DCAEncContext *c)
{
int ch, band;
int32_t step_size;
/* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded
* in current frame - we need this data if subband of next frame is
* ADPCM
*/
for (ch = 0; ch < c->channels; ch++) {
for (band = 0; band < 32; band++) {
int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
if (c->prediction_mode[ch][band] == -1) {
step_size = get_step_size(c, ch, band);
ff_dca_core_dequantize(c->adpcm_history[ch][band],
c->quantized[ch][band]+12, step_size, ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
} else {
AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4);
}
/* Copy dequantized values for LPC analysis.
* It reduces artifacts in case of extreme quantization,
* example: in current frame abits is 1 and has no prediction flag,
* but end of this frame is sine like signal. In this case, if LPC analysis uses
* original values, likely LPC analysis returns good prediction gain, and sets prediction flag.
* But there are no proper value in decoder history, so likely result will be no good.
* Bitstream has "Predictor history flag switch", but this flag disables history for all subbands
*/
samples[0] = c->adpcm_history[ch][band][0] << 7;
samples[1] = c->adpcm_history[ch][band][1] << 7;
samples[2] = c->adpcm_history[ch][band][2] << 7;
samples[3] = c->adpcm_history[ch][band][3] << 7;
}
}
}
static void calc_lfe_scales(DCAEncContext *c) static void calc_lfe_scales(DCAEncContext *c)
{ {
if (c->lfe_channel) if (c->lfe_channel)
@ -1001,9 +1150,14 @@ static void put_subframe(DCAEncContext *c, int subframe)
/* Prediction mode: no ADPCM, in each channel and subband */ /* Prediction mode: no ADPCM, in each channel and subband */
for (ch = 0; ch < c->fullband_channels; ch++) for (ch = 0; ch < c->fullband_channels; ch++)
for (band = 0; band < DCAENC_SUBBANDS; band++) for (band = 0; band < DCAENC_SUBBANDS; band++)
put_bits(&c->pb, 1, 0); put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1));
/* Prediction VQ address */
for (ch = 0; ch < c->fullband_channels; ch++)
for (band = 0; band < DCAENC_SUBBANDS; band++)
if (c->prediction_mode[ch][band] >= 0)
put_bits(&c->pb, 12, c->prediction_mode[ch][band]);
/* Prediction VQ address: not transmitted */
/* Bit allocation index */ /* Bit allocation index */
for (ch = 0; ch < c->fullband_channels; ch++) { for (ch = 0; ch < c->fullband_channels; ch++) {
if (c->bit_allocation_sel[ch] == 6) { if (c->bit_allocation_sel[ch] == 6) {
@ -1068,12 +1222,15 @@ static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
lfe_downsample(c, samples); lfe_downsample(c, samples);
calc_masking(c, samples); calc_masking(c, samples);
if (c->options.adpcm_mode)
adpcm_analysis(c);
find_peaks(c); find_peaks(c);
assign_bits(c); assign_bits(c);
calc_lfe_scales(c); calc_lfe_scales(c);
shift_history(c, samples); shift_history(c, samples);
init_put_bits(&c->pb, avpkt->data, avpkt->size); init_put_bits(&c->pb, avpkt->data, avpkt->size);
fill_in_adpcm_bufer(c);
put_frame_header(c); put_frame_header(c);
put_primary_audio_header(c); put_primary_audio_header(c);
for (i = 0; i < SUBFRAMES; i++) for (i = 0; i < SUBFRAMES; i++)
@ -1092,6 +1249,20 @@ static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
return 0; return 0;
} }
#define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption options[] = {
{ "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS },
{ NULL },
};
static const AVClass dcaenc_class = {
.class_name = "DCA (DTS Coherent Acoustics)",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVCodecDefault defaults[] = { static const AVCodecDefault defaults[] = {
{ "b", "1411200" }, { "b", "1411200" },
{ NULL }, { NULL },
@ -1104,6 +1275,7 @@ AVCodec ff_dca_encoder = {
.id = AV_CODEC_ID_DTS, .id = AV_CODEC_ID_DTS,
.priv_data_size = sizeof(DCAEncContext), .priv_data_size = sizeof(DCAEncContext),
.init = encode_init, .init = encode_init,
.close = encode_close,
.encode2 = encode_frame, .encode2 = encode_frame,
.capabilities = AV_CODEC_CAP_EXPERIMENTAL, .capabilities = AV_CODEC_CAP_EXPERIMENTAL,
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32, .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
@ -1116,4 +1288,5 @@ AVCodec ff_dca_encoder = {
AV_CH_LAYOUT_5POINT1, AV_CH_LAYOUT_5POINT1,
0 }, 0 },
.defaults = defaults, .defaults = defaults,
.priv_class = &dcaenc_class,
}; };

View File

@ -24,6 +24,8 @@
#include <stdint.h> #include <stdint.h>
#include "dcamath.h"
typedef struct { typedef struct {
int32_t m; int32_t m;
int32_t e; int32_t e;
@ -144,4 +146,13 @@ static const int8_t channel_reorder_nolfe[16][9] = {
{ 3, 2, 4, 0, 1, 5, 7, 6, -1 }, { 3, 2, 4, 0, 1, 5, 7, 6, -1 },
}; };
static inline int32_t quantize_value(int32_t value, softfloat quant)
{
int32_t offset = 1 << (quant.e - 1);
value = mul32(value, quant.m) + offset;
value = value >> quant.e;
return value;
}
#endif /* AVCODEC_DCAENC_H */ #endif /* AVCODEC_DCAENC_H */

View File

@ -49,6 +49,7 @@ static inline int32_t mul17(int32_t a, int32_t b) { return mul__(a, b, 17); }
static inline int32_t mul22(int32_t a, int32_t b) { return mul__(a, b, 22); } static inline int32_t mul22(int32_t a, int32_t b) { return mul__(a, b, 22); }
static inline int32_t mul23(int32_t a, int32_t b) { return mul__(a, b, 23); } static inline int32_t mul23(int32_t a, int32_t b) { return mul__(a, b, 23); }
static inline int32_t mul31(int32_t a, int32_t b) { return mul__(a, b, 31); } static inline int32_t mul31(int32_t a, int32_t b) { return mul__(a, b, 31); }
static inline int32_t mul32(int32_t a, int32_t b) { return mul__(a, b, 32); }
static inline int32_t clip23(int32_t a) { return av_clip_intp2(a, 23); } static inline int32_t clip23(int32_t a) { return av_clip_intp2(a, 23); }