1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

imc: move channel-specific data into separate context

This will be useful for Indeo Audio decoder which is almost the same
but supports stereo.
This commit is contained in:
Kostya Shishkov 2012-06-02 20:30:23 +02:00
parent 803391f719
commit c45e2da617

View File

@ -49,9 +49,7 @@
#define BANDS 32 #define BANDS 32
#define COEFFS 256 #define COEFFS 256
typedef struct { typedef struct IMCChannel {
AVFrame frame;
float old_floor[BANDS]; float old_floor[BANDS];
float flcoeffs1[BANDS]; float flcoeffs1[BANDS];
float flcoeffs2[BANDS]; float flcoeffs2[BANDS];
@ -61,16 +59,6 @@ typedef struct {
float flcoeffs6[BANDS]; float flcoeffs6[BANDS];
float CWdecoded[COEFFS]; float CWdecoded[COEFFS];
/** MDCT tables */
//@{
float mdct_sine_window[COEFFS];
float post_cos[COEFFS];
float post_sin[COEFFS];
float pre_coef1[COEFFS];
float pre_coef2[COEFFS];
float last_fft_im[COEFFS];
//@}
int bandWidthT[BANDS]; ///< codewords per band int bandWidthT[BANDS]; ///< codewords per band
int bitsBandT[BANDS]; ///< how many bits per codeword in band int bitsBandT[BANDS]; ///< how many bits per codeword in band
int CWlengthT[COEFFS]; ///< how many bits in each codeword int CWlengthT[COEFFS]; ///< how many bits in each codeword
@ -82,9 +70,28 @@ typedef struct {
int skipFlagCount[BANDS]; ///< skipped coeffients per band int skipFlagCount[BANDS]; ///< skipped coeffients per band
int skipFlags[COEFFS]; ///< skip coefficient decoding or not int skipFlags[COEFFS]; ///< skip coefficient decoding or not
int codewords[COEFFS]; ///< raw codewords read from bitstream int codewords[COEFFS]; ///< raw codewords read from bitstream
float last_fft_im[COEFFS];
int decoder_reset;
} IMCChannel;
typedef struct {
AVFrame frame;
IMCChannel chctx[1];
/** MDCT tables */
//@{
float mdct_sine_window[COEFFS];
float post_cos[COEFFS];
float post_sin[COEFFS];
float pre_coef1[COEFFS];
float pre_coef2[COEFFS];
//@}
float sqrt_tab[30]; float sqrt_tab[30];
GetBitContext gb; GetBitContext gb;
int decoder_reset;
float one_div_log2; float one_div_log2;
DSPContext dsp; DSPContext dsp;
@ -115,10 +122,15 @@ static av_cold int imc_decode_init(AVCodecContext *avctx)
return AVERROR_PATCHWELCOME; return AVERROR_PATCHWELCOME;
} }
q->decoder_reset = 1; for (j = 0; j < avctx->channels; j++) {
q->chctx[j].decoder_reset = 1;
for (i = 0; i < BANDS; i++) for (i = 0; i < BANDS; i++)
q->old_floor[i] = 1.0; q->chctx[j].old_floor[i] = 1.0;
for (i = 0; i < COEFFS / 2; i++)
q->chctx[j].last_fft_im[i] = 0;
}
/* Build mdct window, a simple sine window normalized with sqrt(2) */ /* Build mdct window, a simple sine window normalized with sqrt(2) */
ff_sine_window_init(q->mdct_sine_window, COEFFS); ff_sine_window_init(q->mdct_sine_window, COEFFS);
@ -138,8 +150,6 @@ static av_cold int imc_decode_init(AVCodecContext *avctx)
q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0); q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
q->pre_coef2[i] = (r1 - r2) * sqrt(2.0); q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
} }
q->last_fft_im[i] = 0;
} }
/* Generate a square root table */ /* Generate a square root table */
@ -164,8 +174,9 @@ static av_cold int imc_decode_init(AVCodecContext *avctx)
return ret; return ret;
} }
ff_dsputil_init(&q->dsp, avctx); ff_dsputil_init(&q->dsp, avctx);
avctx->sample_fmt = AV_SAMPLE_FMT_FLT; avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
avctx->channel_layout = AV_CH_LAYOUT_MONO; avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
: AV_CH_LAYOUT_STEREO;
avcodec_get_frame_defaults(&q->frame); avcodec_get_frame_defaults(&q->frame);
avctx->coded_frame = &q->frame; avctx->coded_frame = &q->frame;
@ -313,8 +324,8 @@ static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
/** /**
* Perform bit allocation depending on bits available * Perform bit allocation depending on bits available
*/ */
static int bit_allocation(IMCContext *q, int stream_format_code, int freebits, static int bit_allocation(IMCContext *q, IMCChannel *chctx,
int flag) int stream_format_code, int freebits, int flag)
{ {
int i, j; int i, j;
const float limit = -1.e20; const float limit = -1.e20;
@ -333,43 +344,43 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
int found_indx = 0; int found_indx = 0;
for (i = 0; i < BANDS; i++) for (i = 0; i < BANDS; i++)
highest = FFMAX(highest, q->flcoeffs1[i]); highest = FFMAX(highest, chctx->flcoeffs1[i]);
for (i = 0; i < BANDS - 1; i++) for (i = 0; i < BANDS - 1; i++)
q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i]) / log(2); chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log(chctx->flcoeffs5[i]) / log(2);
q->flcoeffs4[BANDS - 1] = limit; chctx->flcoeffs4[BANDS - 1] = limit;
highest = highest * 0.25; highest = highest * 0.25;
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
indx = -1; indx = -1;
if ((band_tab[i + 1] - band_tab[i]) == q->bandWidthT[i]) if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
indx = 0; indx = 0;
if ((band_tab[i + 1] - band_tab[i]) > q->bandWidthT[i]) if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
indx = 1; indx = 1;
if (((band_tab[i + 1] - band_tab[i]) / 2) >= q->bandWidthT[i]) if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
indx = 2; indx = 2;
if (indx == -1) if (indx == -1)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
q->flcoeffs4[i] += xTab[(indx * 2 + (q->flcoeffs1[i] < highest)) * 2 + flag]; chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
} }
if (stream_format_code & 0x2) { if (stream_format_code & 0x2) {
q->flcoeffs4[0] = limit; chctx->flcoeffs4[0] = limit;
q->flcoeffs4[1] = limit; chctx->flcoeffs4[1] = limit;
q->flcoeffs4[2] = limit; chctx->flcoeffs4[2] = limit;
q->flcoeffs4[3] = limit; chctx->flcoeffs4[3] = limit;
} }
for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) { for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
iacc += q->bandWidthT[i]; iacc += chctx->bandWidthT[i];
summa += q->bandWidthT[i] * q->flcoeffs4[i]; summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
} }
q->bandWidthT[BANDS - 1] = 0; chctx->bandWidthT[BANDS - 1] = 0;
summa = (summa * 0.5 - freebits) / iacc; summa = (summa * 0.5 - freebits) / iacc;
@ -382,13 +393,13 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
iacc = 0; iacc = 0;
for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) { for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6); cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
q->bitsBandT[j] = cwlen; chctx->bitsBandT[j] = cwlen;
summer += q->bandWidthT[j] * cwlen; summer += chctx->bandWidthT[j] * cwlen;
if (cwlen > 0) if (cwlen > 0)
iacc += q->bandWidthT[j]; iacc += chctx->bandWidthT[j];
} }
flg = t2; flg = t2;
@ -405,13 +416,13 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) { for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++) for (j = band_tab[i]; j < band_tab[i + 1]; j++)
q->CWlengthT[j] = q->bitsBandT[i]; chctx->CWlengthT[j] = chctx->bitsBandT[i];
} }
if (freebits > summer) { if (freebits > summer) {
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
: (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
} }
highest = 0.0; highest = 0.0;
@ -432,11 +443,11 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
if (highest > -1.e20) { if (highest > -1.e20) {
workT[found_indx] -= 2.0; workT[found_indx] -= 2.0;
if (++q->bitsBandT[found_indx] == 6) if (++chctx->bitsBandT[found_indx] == 6)
workT[found_indx] = -1.e20; workT[found_indx] = -1.e20;
for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) { for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
q->CWlengthT[j]++; chctx->CWlengthT[j]++;
summer++; summer++;
} }
} }
@ -444,7 +455,7 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
} }
if (freebits < summer) { if (freebits < summer) {
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
: 1.e20; : 1.e20;
} }
if (stream_format_code & 0x2) { if (stream_format_code & 0x2) {
@ -466,12 +477,12 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
// break; // break;
workT[low_indx] = lowest + 2.0; workT[low_indx] = lowest + 2.0;
if (!--q->bitsBandT[low_indx]) if (!--chctx->bitsBandT[low_indx])
workT[low_indx] = 1.e20; workT[low_indx] = 1.e20;
for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) { for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
if (q->CWlengthT[j] > 0) { if (chctx->CWlengthT[j] > 0) {
q->CWlengthT[j]--; chctx->CWlengthT[j]--;
summer--; summer--;
} }
} }
@ -480,54 +491,54 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
return 0; return 0;
} }
static void imc_get_skip_coeff(IMCContext *q) static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
{ {
int i, j; int i, j;
memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits)); memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount)); memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (!q->bandFlagsBuf[i] || !q->bandWidthT[i]) if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
continue; continue;
if (!q->skipFlagRaw[i]) { if (!chctx->skipFlagRaw[i]) {
q->skipFlagBits[i] = band_tab[i + 1] - band_tab[i]; chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->skipFlags[j] = get_bits1(&q->gb); chctx->skipFlags[j] = get_bits1(&q->gb);
if (q->skipFlags[j]) if (chctx->skipFlags[j])
q->skipFlagCount[i]++; chctx->skipFlagCount[i]++;
} }
} else { } else {
for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) { for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
if (!get_bits1(&q->gb)) { // 0 if (!get_bits1(&q->gb)) { // 0
q->skipFlagBits[i]++; chctx->skipFlagBits[i]++;
q->skipFlags[j] = 1; chctx->skipFlags[j] = 1;
q->skipFlags[j + 1] = 1; chctx->skipFlags[j + 1] = 1;
q->skipFlagCount[i] += 2; chctx->skipFlagCount[i] += 2;
} else { } else {
if (get_bits1(&q->gb)) { // 11 if (get_bits1(&q->gb)) { // 11
q->skipFlagBits[i] += 2; chctx->skipFlagBits[i] += 2;
q->skipFlags[j] = 0; chctx->skipFlags[j] = 0;
q->skipFlags[j + 1] = 1; chctx->skipFlags[j + 1] = 1;
q->skipFlagCount[i]++; chctx->skipFlagCount[i]++;
} else { } else {
q->skipFlagBits[i] += 3; chctx->skipFlagBits[i] += 3;
q->skipFlags[j + 1] = 0; chctx->skipFlags[j + 1] = 0;
if (!get_bits1(&q->gb)) { // 100 if (!get_bits1(&q->gb)) { // 100
q->skipFlags[j] = 1; chctx->skipFlags[j] = 1;
q->skipFlagCount[i]++; chctx->skipFlagCount[i]++;
} else { // 101 } else { // 101
q->skipFlags[j] = 0; chctx->skipFlags[j] = 0;
} }
} }
} }
} }
if (j < band_tab[i + 1]) { if (j < band_tab[i + 1]) {
q->skipFlagBits[i]++; chctx->skipFlagBits[i]++;
if ((q->skipFlags[j] = get_bits1(&q->gb))) if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
q->skipFlagCount[i]++; chctx->skipFlagCount[i]++;
} }
} }
} }
@ -536,7 +547,8 @@ static void imc_get_skip_coeff(IMCContext *q)
/** /**
* Increase highest' band coefficient sizes as some bits won't be used * Increase highest' band coefficient sizes as some bits won't be used
*/ */
static void imc_adjust_bit_allocation(IMCContext *q, int summer) static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
int summer)
{ {
float workT[32]; float workT[32];
int corrected = 0; int corrected = 0;
@ -545,8 +557,8 @@ static void imc_adjust_bit_allocation(IMCContext *q, int summer)
int found_indx = 0; int found_indx = 0;
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
: (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
} }
while (corrected < summer) { while (corrected < summer) {
@ -564,12 +576,12 @@ static void imc_adjust_bit_allocation(IMCContext *q, int summer)
if (highest > -1.e20) { if (highest > -1.e20) {
workT[found_indx] -= 2.0; workT[found_indx] -= 2.0;
if (++(q->bitsBandT[found_indx]) == 6) if (++(chctx->bitsBandT[found_indx]) == 6)
workT[found_indx] = -1.e20; workT[found_indx] = -1.e20;
for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) { for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) { if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
q->CWlengthT[j]++; chctx->CWlengthT[j]++;
corrected++; corrected++;
} }
} }
@ -577,17 +589,17 @@ static void imc_adjust_bit_allocation(IMCContext *q, int summer)
} }
} }
static void imc_imdct256(IMCContext *q) static void imc_imdct256(IMCContext *q, IMCChannel *chctx)
{ {
int i; int i;
float re, im; float re, im;
/* prerotation */ /* prerotation */
for (i = 0; i < COEFFS / 2; i++) { for (i = 0; i < COEFFS / 2; i++) {
q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS - 1 - i * 2]) - q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef2[i] * q->CWdecoded[i * 2]); (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS - 1 - i * 2]) - q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef1[i] * q->CWdecoded[i * 2]); (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
} }
/* FFT */ /* FFT */
@ -598,15 +610,16 @@ static void imc_imdct256(IMCContext *q)
for (i = 0; i < COEFFS / 2; i++) { for (i = 0; i < COEFFS / 2; i++) {
re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]); re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]); im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
q->out_samples[i * 2] = (q->mdct_sine_window[COEFFS - 1 - i * 2] * q->last_fft_im[i]) q->out_samples[i * 2] = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
+ (q->mdct_sine_window[i * 2] * re); + (q->mdct_sine_window[i * 2] * re);
q->out_samples[COEFFS - 1 - i * 2] = (q->mdct_sine_window[i * 2] * q->last_fft_im[i]) q->out_samples[COEFFS - 1 - i * 2] = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
- (q->mdct_sine_window[COEFFS - 1 - i * 2] * re); - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
q->last_fft_im[i] = im; chctx->last_fft_im[i] = im;
} }
} }
static int inverse_quant_coeff(IMCContext *q, int stream_format_code) static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
int stream_format_code)
{ {
int i, j; int i, j;
int middle_value, cw_len, max_size; int middle_value, cw_len, max_size;
@ -614,30 +627,30 @@ static int inverse_quant_coeff(IMCContext *q, int stream_format_code)
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->CWdecoded[j] = 0; chctx->CWdecoded[j] = 0;
cw_len = q->CWlengthT[j]; cw_len = chctx->CWlengthT[j];
if (cw_len <= 0 || q->skipFlags[j]) if (cw_len <= 0 || chctx->skipFlags[j])
continue; continue;
max_size = 1 << cw_len; max_size = 1 << cw_len;
middle_value = max_size >> 1; middle_value = max_size >> 1;
if (q->codewords[j] >= max_size || q->codewords[j] < 0) if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
if (cw_len >= 4) { if (cw_len >= 4) {
quantizer = imc_quantizer2[(stream_format_code & 2) >> 1]; quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
if (q->codewords[j] >= middle_value) if (chctx->codewords[j] >= middle_value)
q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i]; chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
else else
q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i]; chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
}else{ }else{
quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)]; quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
if (q->codewords[j] >= middle_value) if (chctx->codewords[j] >= middle_value)
q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i]; chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
else else
q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i]; chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
} }
} }
} }
@ -645,16 +658,16 @@ static int inverse_quant_coeff(IMCContext *q, int stream_format_code)
} }
static int imc_get_coeffs(IMCContext *q) static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
{ {
int i, j, cw_len, cw; int i, j, cw_len, cw;
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (!q->sumLenArr[i]) if (!chctx->sumLenArr[i])
continue; continue;
if (q->bandFlagsBuf[i] || q->bandWidthT[i]) { if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
cw_len = q->CWlengthT[j]; cw_len = chctx->CWlengthT[j];
cw = 0; cw = 0;
if (get_bits_count(&q->gb) + cw_len > 512) { if (get_bits_count(&q->gb) + cw_len > 512) {
@ -662,47 +675,25 @@ static int imc_get_coeffs(IMCContext *q)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
if (cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j])) if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
cw = get_bits(&q->gb, cw_len); cw = get_bits(&q->gb, cw_len);
q->codewords[j] = cw; chctx->codewords[j] = cw;
} }
} }
} }
return 0; return 0;
} }
static int imc_decode_frame(AVCodecContext *avctx, void *data, static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
int *got_frame_ptr, AVPacket *avpkt)
{ {
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
IMCContext *q = avctx->priv_data;
int stream_format_code; int stream_format_code;
int imc_hdr, i, j, ret; int imc_hdr, i, j, ret;
int flag; int flag;
int bits, summer; int bits, summer;
int counter, bitscount; int counter, bitscount;
LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]); IMCChannel *chctx = q->chctx + ch;
if (buf_size < IMC_BLOCK_SIZE) {
av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
return AVERROR_INVALIDDATA;
}
/* get output buffer */
q->frame.nb_samples = COEFFS;
if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
q->out_samples = (float*)q->frame.data[0];
q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
/* Check the frame header */ /* Check the frame header */
imc_hdr = get_bits(&q->gb, 9); imc_hdr = get_bits(&q->gb, 9);
@ -721,90 +712,90 @@ static int imc_decode_frame(AVCodecContext *avctx, void *data,
// av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code); // av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
if (stream_format_code & 0x04) if (stream_format_code & 0x04)
q->decoder_reset = 1; chctx->decoder_reset = 1;
if (q->decoder_reset) { if (chctx->decoder_reset) {
memset(q->out_samples, 0, sizeof(q->out_samples)); memset(q->out_samples, 0, sizeof(q->out_samples));
for (i = 0; i < BANDS; i++) for (i = 0; i < BANDS; i++)
q->old_floor[i] = 1.0; chctx->old_floor[i] = 1.0;
for (i = 0; i < COEFFS; i++) for (i = 0; i < COEFFS; i++)
q->CWdecoded[i] = 0; chctx->CWdecoded[i] = 0;
q->decoder_reset = 0; chctx->decoder_reset = 0;
} }
flag = get_bits1(&q->gb); flag = get_bits1(&q->gb);
imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf); imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
if (stream_format_code & 0x4) if (stream_format_code & 0x4)
imc_decode_level_coefficients(q, q->levlCoeffBuf, imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
q->flcoeffs1, q->flcoeffs2); chctx->flcoeffs1, chctx->flcoeffs2);
else else
imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
q->flcoeffs1, q->flcoeffs2); chctx->flcoeffs1, chctx->flcoeffs2);
memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float)); memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
counter = 0; counter = 0;
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (q->levlCoeffBuf[i] == 16) { if (chctx->levlCoeffBuf[i] == 16) {
q->bandWidthT[i] = 0; chctx->bandWidthT[i] = 0;
counter++; counter++;
} else } else
q->bandWidthT[i] = band_tab[i + 1] - band_tab[i]; chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
} }
memset(q->bandFlagsBuf, 0, BANDS * sizeof(int)); memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
for (i = 0; i < BANDS - 1; i++) { for (i = 0; i < BANDS - 1; i++) {
if (q->bandWidthT[i]) if (chctx->bandWidthT[i])
q->bandFlagsBuf[i] = get_bits1(&q->gb); chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
} }
imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5); imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2, chctx->bandWidthT, chctx->flcoeffs3, chctx->flcoeffs5);
bitscount = 0; bitscount = 0;
/* first 4 bands will be assigned 5 bits per coefficient */ /* first 4 bands will be assigned 5 bits per coefficient */
if (stream_format_code & 0x2) { if (stream_format_code & 0x2) {
bitscount += 15; bitscount += 15;
q->bitsBandT[0] = 5; chctx->bitsBandT[0] = 5;
q->CWlengthT[0] = 5; chctx->CWlengthT[0] = 5;
q->CWlengthT[1] = 5; chctx->CWlengthT[1] = 5;
q->CWlengthT[2] = 5; chctx->CWlengthT[2] = 5;
for (i = 1; i < 4; i++) { for (i = 1; i < 4; i++) {
bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5; bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
q->bitsBandT[i] = bits; chctx->bitsBandT[i] = bits;
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->CWlengthT[j] = bits; chctx->CWlengthT[j] = bits;
bitscount += bits; bitscount += bits;
} }
} }
} }
if ((ret = bit_allocation(q, stream_format_code, if ((ret = bit_allocation(q, chctx, stream_format_code,
512 - bitscount - get_bits_count(&q->gb), 512 - bitscount - get_bits_count(&q->gb),
flag)) < 0) { flag)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n"); av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
q->decoder_reset = 1; chctx->decoder_reset = 1;
return ret; return ret;
} }
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
q->sumLenArr[i] = 0; chctx->sumLenArr[i] = 0;
q->skipFlagRaw[i] = 0; chctx->skipFlagRaw[i] = 0;
for (j = band_tab[i]; j < band_tab[i + 1]; j++) for (j = band_tab[i]; j < band_tab[i + 1]; j++)
q->sumLenArr[i] += q->CWlengthT[j]; chctx->sumLenArr[i] += chctx->CWlengthT[j];
if (q->bandFlagsBuf[i]) if (chctx->bandFlagsBuf[i])
if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0)) if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
q->skipFlagRaw[i] = 1; chctx->skipFlagRaw[i] = 1;
} }
imc_get_skip_coeff(q); imc_get_skip_coeff(q, chctx);
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
q->flcoeffs6[i] = q->flcoeffs1[i]; chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
/* band has flag set and at least one coded coefficient */ /* band has flag set and at least one coded coefficient */
if (q->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != q->skipFlagCount[i]) { if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
q->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] / chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - q->skipFlagCount[i])]; q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
} }
} }
@ -812,49 +803,88 @@ static int imc_decode_frame(AVCodecContext *avctx, void *data,
bits = summer = 0; bits = summer = 0;
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (q->bandFlagsBuf[i]) { if (chctx->bandFlagsBuf[i]) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
if (q->skipFlags[j]) { if (chctx->skipFlags[j]) {
summer += q->CWlengthT[j]; summer += chctx->CWlengthT[j];
q->CWlengthT[j] = 0; chctx->CWlengthT[j] = 0;
} }
} }
bits += q->skipFlagBits[i]; bits += chctx->skipFlagBits[i];
summer -= q->skipFlagBits[i]; summer -= chctx->skipFlagBits[i];
} }
} }
imc_adjust_bit_allocation(q, summer); imc_adjust_bit_allocation(q, chctx, summer);
for (i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
q->sumLenArr[i] = 0; chctx->sumLenArr[i] = 0;
for (j = band_tab[i]; j < band_tab[i + 1]; j++) for (j = band_tab[i]; j < band_tab[i + 1]; j++)
if (!q->skipFlags[j]) if (!chctx->skipFlags[j])
q->sumLenArr[i] += q->CWlengthT[j]; chctx->sumLenArr[i] += chctx->CWlengthT[j];
} }
memset(q->codewords, 0, sizeof(q->codewords)); memset(chctx->codewords, 0, sizeof(chctx->codewords));
if (imc_get_coeffs(q) < 0) { if (imc_get_coeffs(q, chctx) < 0) {
av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n"); av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
q->decoder_reset = 1; chctx->decoder_reset = 1;
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
if (inverse_quant_coeff(q, stream_format_code) < 0) { if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n"); av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
q->decoder_reset = 1; chctx->decoder_reset = 1;
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
memset(q->skipFlags, 0, sizeof(q->skipFlags)); memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
imc_imdct256(q); imc_imdct256(q, chctx);
return 0;
}
static int imc_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int ret, i;
IMCContext *q = avctx->priv_data;
LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
if (buf_size < IMC_BLOCK_SIZE) {
av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
return AVERROR_INVALIDDATA;
}
/* get output buffer */
q->frame.nb_samples = COEFFS;
if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
for (i = 0; i < avctx->channels; i++) {
q->out_samples = (float*)q->frame.data[0] + i;
q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
buf += IMC_BLOCK_SIZE;
if ((ret = imc_decode_block(avctx, q, i)) < 0)
return ret;
}
*got_frame_ptr = 1; *got_frame_ptr = 1;
*(AVFrame *)data = q->frame; *(AVFrame *)data = q->frame;
return IMC_BLOCK_SIZE; return IMC_BLOCK_SIZE * avctx->channels;
} }