mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
dnn: convert tf.pad to native model in python script, and load/execute it in the c code.
since tf.pad is enabled, the conv2d(valid) changes back to its original behavior. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
parent
3805aae479
commit
ccbab41039
@ -25,6 +25,7 @@
|
||||
|
||||
#include "dnn_backend_native.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_pad.h"
|
||||
|
||||
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
{
|
||||
@ -32,6 +33,7 @@ static DNNReturnType set_input_output_native(void *model, DNNInputData *input, c
|
||||
InputParams *input_params;
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
int cur_width, cur_height, cur_channels;
|
||||
int32_t layer;
|
||||
|
||||
@ -77,6 +79,12 @@ static DNNReturnType set_input_output_native(void *model, DNNInputData *input, c
|
||||
cur_height *= depth_to_space_params->block_size;
|
||||
cur_width *= depth_to_space_params->block_size;
|
||||
break;
|
||||
case MIRROR_PAD:
|
||||
pad_params = (LayerPadParams *)network->layers[layer].params;
|
||||
cur_height = cur_height + pad_params->paddings[1][0] + pad_params->paddings[1][1];
|
||||
cur_width = cur_width + pad_params->paddings[2][0] + pad_params->paddings[2][1];
|
||||
cur_channels = cur_channels + pad_params->paddings[3][0] + pad_params->paddings[3][1];
|
||||
break;
|
||||
default:
|
||||
return DNN_ERROR;
|
||||
}
|
||||
@ -110,6 +118,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
DNNLayerType layer_type;
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
|
||||
model = av_malloc(sizeof(DNNModel));
|
||||
if (!model){
|
||||
@ -207,6 +216,23 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
network->layers[layer].type = DEPTH_TO_SPACE;
|
||||
network->layers[layer].params = depth_to_space_params;
|
||||
break;
|
||||
case MIRROR_PAD:
|
||||
pad_params = av_malloc(sizeof(LayerPadParams));
|
||||
if (!pad_params){
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
}
|
||||
pad_params->mode = (int32_t)avio_rl32(model_file_context);
|
||||
dnn_size += 4;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
pad_params->paddings[i][0] = avio_rl32(model_file_context);
|
||||
pad_params->paddings[i][1] = avio_rl32(model_file_context);
|
||||
dnn_size += 8;
|
||||
}
|
||||
network->layers[layer].type = MIRROR_PAD;
|
||||
network->layers[layer].params = pad_params;
|
||||
break;
|
||||
default:
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
@ -314,6 +340,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
InputParams *input_params;
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
|
||||
if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
|
||||
return DNN_ERROR;
|
||||
@ -348,6 +375,14 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
cur_width *= depth_to_space_params->block_size;
|
||||
cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size;
|
||||
break;
|
||||
case MIRROR_PAD:
|
||||
pad_params = (LayerPadParams *)network->layers[layer].params;
|
||||
dnn_execute_layer_pad(network->layers[layer - 1].output, network->layers[layer].output,
|
||||
pad_params, 1, cur_height, cur_width, cur_channels);
|
||||
cur_height = cur_height + pad_params->paddings[1][0] + pad_params->paddings[1][1];
|
||||
cur_width = cur_width + pad_params->paddings[2][0] + pad_params->paddings[2][1];
|
||||
cur_channels = cur_channels + pad_params->paddings[3][0] + pad_params->paddings[3][1];
|
||||
break;
|
||||
case INPUT:
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
@ -30,7 +30,7 @@
|
||||
#include "../dnn_interface.h"
|
||||
#include "libavformat/avio.h"
|
||||
|
||||
typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType;
|
||||
typedef enum {INPUT, CONV, DEPTH_TO_SPACE, MIRROR_PAD} DNNLayerType;
|
||||
|
||||
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
|
||||
|
||||
|
@ -23,9 +23,6 @@ import sys, struct
|
||||
|
||||
__all__ = ['convert_from_tensorflow']
|
||||
|
||||
# as the first step to be compatible with vf_sr, it is not general.
|
||||
# it will be refined step by step.
|
||||
|
||||
class TFConverter:
|
||||
def __init__(self, graph_def, nodes, outfile):
|
||||
self.graph_def = graph_def
|
||||
@ -36,9 +33,10 @@ class TFConverter:
|
||||
self.name_node_dict = {}
|
||||
self.edges = {}
|
||||
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'LeakyRelu':4}
|
||||
self.conv_paddings = {'VALID':2, 'SAME':1}
|
||||
self.conv_paddings = {'VALID':0, 'SAME':1}
|
||||
self.converted_nodes = set()
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2}
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
|
||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||
|
||||
|
||||
def dump_for_tensorboard(self):
|
||||
@ -101,6 +99,19 @@ class TFConverter:
|
||||
self.converted_nodes.add(node.name)
|
||||
|
||||
|
||||
def dump_mirrorpad_to_file(self, node, f):
|
||||
assert(node.op == 'MirrorPad')
|
||||
self.layer_number = self.layer_number + 1
|
||||
mode = node.attr['mode'].s
|
||||
mode = self.mirrorpad_mode[mode.decode("utf-8")]
|
||||
np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
|
||||
pnode = self.name_node_dict[node.input[1]]
|
||||
self.converted_nodes.add(pnode.name)
|
||||
paddings = pnode.attr['value'].tensor.tensor_content
|
||||
f.write(paddings)
|
||||
self.converted_nodes.add(node.name)
|
||||
|
||||
|
||||
def generate_layer_number(self):
|
||||
# in current hard code implementation, the layer number is the first data written to the native model file
|
||||
# it is not easy to know it at the beginning time in the general converter, so first do a dry run for compatibility
|
||||
@ -118,6 +129,8 @@ class TFConverter:
|
||||
self.dump_conv2d_to_file(node, f)
|
||||
elif node.op == 'DepthToSpace':
|
||||
self.dump_depth2space_to_file(node, f)
|
||||
elif node.op == 'MirrorPad':
|
||||
self.dump_mirrorpad_to_file(node, f)
|
||||
|
||||
|
||||
def dump_to_file(self):
|
||||
|
Loading…
x
Reference in New Issue
Block a user