1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

Merge remote-tracking branch 'qatar/master'

* qatar/master:
  FATE: update reference for seek-alac_mp4
  sunrast: Return AVERROR values instead of -1.
  sunrast: Add support for gray8 decoding.
  swscale: enforce a minimum filtersize.
  alacenc: use AVCodec.encode2()
  alacenc: cosmetics: indentation
  alacenc: consolidate bitstream writing into a single function.
  alacenc: only encode frame size in header for a final smaller frame
  alacenc: store current frame size in AlacEncodeContext.
  alacenc: return AVERROR codes in alac_encode_frame()
  alacenc: calculate a new max frame size for the final small frame
  alacenc: pretty-printing and other cosmetics
  alacenc: fix error handling and potential memleaks in alac_encode_init()
  alacenc: do not set coded_frame->key_frame
  alacenc: do not set bits_per_coded_sample
  alacenc: remove unneeded frame_size check in alac_encode_frame()
  tta: error out if samplerate is zero.
  ttadec: fix invalid free when an error occurs while decoding 24-bit tta
  wavpack: add needed braces for 2 statements inside an if block

Conflicts:
	tests/ref/acodec/alac

Merged-by: Michael Niedermayer <michaelni@gmx.at>
This commit is contained in:
Michael Niedermayer 2012-02-12 01:02:55 +01:00
commit cd1c12b5c5
7 changed files with 253 additions and 210 deletions

View File

@ -22,6 +22,7 @@
#include "avcodec.h"
#include "put_bits.h"
#include "dsputil.h"
#include "internal.h"
#include "lpc.h"
#include "mathops.h"
@ -58,6 +59,8 @@ typedef struct AlacLPCContext {
} AlacLPCContext;
typedef struct AlacEncodeContext {
int frame_size; /**< current frame size */
int verbatim; /**< current frame verbatim mode flag */
int compression_level;
int min_prediction_order;
int max_prediction_order;
@ -82,7 +85,7 @@ static void init_sample_buffers(AlacEncodeContext *s,
for (ch = 0; ch < s->avctx->channels; ch++) {
const int16_t *sptr = input_samples + ch;
for (i = 0; i < s->avctx->frame_size; i++) {
for (i = 0; i < s->frame_size; i++) {
s->sample_buf[ch][i] = *sptr;
sptr += s->avctx->channels;
}
@ -117,14 +120,20 @@ static void encode_scalar(AlacEncodeContext *s, int x,
}
}
static void write_frame_header(AlacEncodeContext *s, int is_verbatim)
static void write_frame_header(AlacEncodeContext *s)
{
int encode_fs = 0;
if (s->frame_size < DEFAULT_FRAME_SIZE)
encode_fs = 1;
put_bits(&s->pbctx, 3, s->avctx->channels-1); // No. of channels -1
put_bits(&s->pbctx, 16, 0); // Seems to be zero
put_bits(&s->pbctx, 1, 1); // Sample count is in the header
put_bits(&s->pbctx, 1, encode_fs); // Sample count is in the header
put_bits(&s->pbctx, 2, 0); // FIXME: Wasted bytes field
put_bits(&s->pbctx, 1, is_verbatim); // Audio block is verbatim
put_bits32(&s->pbctx, s->avctx->frame_size); // No. of samples in the frame
put_bits(&s->pbctx, 1, s->verbatim); // Audio block is verbatim
if (encode_fs)
put_bits32(&s->pbctx, s->frame_size); // No. of samples in the frame
}
static void calc_predictor_params(AlacEncodeContext *s, int ch)
@ -144,7 +153,7 @@ static void calc_predictor_params(AlacEncodeContext *s, int ch)
s->lpc[ch].lpc_coeff[5] = -25;
} else {
opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
s->avctx->frame_size,
s->frame_size,
s->min_prediction_order,
s->max_prediction_order,
ALAC_MAX_LPC_PRECISION, coefs, shift,
@ -167,8 +176,8 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
/* calculate sum of 2nd order residual for each channel */
sum[0] = sum[1] = sum[2] = sum[3] = 0;
for (i = 2; i < n; i++) {
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
lt = left_ch[i] - 2 * left_ch[i - 1] + left_ch[i - 2];
rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
sum[2] += FFABS((lt + rt) >> 1);
sum[3] += FFABS(lt - rt);
sum[0] += FFABS(lt);
@ -184,36 +193,31 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
/* return mode with lowest score */
best = 0;
for (i = 1; i < 4; i++) {
if (score[i] < score[best]) {
if (score[i] < score[best])
best = i;
}
}
return best;
}
static void alac_stereo_decorrelation(AlacEncodeContext *s)
{
int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
int i, mode, n = s->avctx->frame_size;
int i, mode, n = s->frame_size;
int32_t tmp;
mode = estimate_stereo_mode(left, right, n);
switch(mode)
{
switch (mode) {
case ALAC_CHMODE_LEFT_RIGHT:
s->interlacing_leftweight = 0;
s->interlacing_shift = 0;
break;
case ALAC_CHMODE_LEFT_SIDE:
for (i = 0; i < n; i++) {
for (i = 0; i < n; i++)
right[i] = left[i] - right[i];
}
s->interlacing_leftweight = 1;
s->interlacing_shift = 0;
break;
case ALAC_CHMODE_RIGHT_SIDE:
for (i = 0; i < n; i++) {
tmp = right[i];
@ -223,7 +227,6 @@ static void alac_stereo_decorrelation(AlacEncodeContext *s)
s->interlacing_leftweight = 1;
s->interlacing_shift = 31;
break;
default:
for (i = 0; i < n; i++) {
tmp = left[i];
@ -244,8 +247,10 @@ static void alac_linear_predictor(AlacEncodeContext *s, int ch)
if (lpc.lpc_order == 31) {
s->predictor_buf[0] = s->sample_buf[ch][0];
for (i = 1; i < s->avctx->frame_size; i++)
s->predictor_buf[i] = s->sample_buf[ch][i] - s->sample_buf[ch][i-1];
for (i = 1; i < s->frame_size; i++) {
s->predictor_buf[i] = s->sample_buf[ch][i ] -
s->sample_buf[ch][i - 1];
}
return;
}
@ -262,7 +267,7 @@ static void alac_linear_predictor(AlacEncodeContext *s, int ch)
residual[i] = samples[i] - samples[i-1];
// perform lpc on remaining samples
for (i = lpc.lpc_order + 1; i < s->avctx->frame_size; i++) {
for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
for (j = 0; j < lpc.lpc_order; j++) {
@ -276,21 +281,20 @@ static void alac_linear_predictor(AlacEncodeContext *s, int ch)
s->write_sample_size);
res_val = residual[i];
if(res_val) {
if (res_val) {
int index = lpc.lpc_order - 1;
int neg = (res_val < 0);
while(index >= 0 && (neg ? (res_val < 0):(res_val > 0))) {
while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
int val = samples[0] - samples[lpc.lpc_order - index];
int sign = (val ? FFSIGN(val) : 0);
if(neg)
sign*=-1;
if (neg)
sign *= -1;
lpc.lpc_coeff[index] -= sign;
val *= sign;
res_val -= ((val >> lpc.lpc_quant) *
(lpc.lpc_order - index));
res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
index--;
}
}
@ -305,69 +309,77 @@ static void alac_entropy_coder(AlacEncodeContext *s)
int sign_modifier = 0, i, k;
int32_t *samples = s->predictor_buf;
for (i = 0; i < s->avctx->frame_size;) {
for (i = 0; i < s->frame_size;) {
int x;
k = av_log2((history >> 9) + 3);
x = -2*(*samples)-1;
x ^= (x>>31);
x = -2 * (*samples) -1;
x ^= x >> 31;
samples++;
i++;
encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
history += x * s->rc.history_mult
- ((history * s->rc.history_mult) >> 9);
history += x * s->rc.history_mult -
((history * s->rc.history_mult) >> 9);
sign_modifier = 0;
if (x > 0xFFFF)
history = 0xFFFF;
if (history < 128 && i < s->avctx->frame_size) {
if (history < 128 && i < s->frame_size) {
unsigned int block_size = 0;
k = 7 - av_log2(history) + ((history + 16) >> 6);
while (*samples == 0 && i < s->avctx->frame_size) {
while (*samples == 0 && i < s->frame_size) {
samples++;
i++;
block_size++;
}
encode_scalar(s, block_size, k, 16);
sign_modifier = (block_size <= 0xFFFF);
history = 0;
}
}
}
static void write_compressed_frame(AlacEncodeContext *s)
static int write_frame(AlacEncodeContext *s, AVPacket *avpkt,
const int16_t *samples)
{
int i, j;
int prediction_type = 0;
PutBitContext *pb = &s->pbctx;
init_put_bits(pb, avpkt->data, avpkt->size);
if (s->verbatim) {
write_frame_header(s);
for (i = 0; i < s->frame_size * s->avctx->channels; i++)
put_sbits(pb, 16, *samples++);
} else {
init_sample_buffers(s, samples);
write_frame_header(s);
if (s->avctx->channels == 2)
alac_stereo_decorrelation(s);
put_bits(&s->pbctx, 8, s->interlacing_shift);
put_bits(&s->pbctx, 8, s->interlacing_leftweight);
put_bits(pb, 8, s->interlacing_shift);
put_bits(pb, 8, s->interlacing_leftweight);
for (i = 0; i < s->avctx->channels; i++) {
calc_predictor_params(s, i);
put_bits(&s->pbctx, 4, prediction_type);
put_bits(&s->pbctx, 4, s->lpc[i].lpc_quant);
put_bits(pb, 4, prediction_type);
put_bits(pb, 4, s->lpc[i].lpc_quant);
put_bits(&s->pbctx, 3, s->rc.rice_modifier);
put_bits(&s->pbctx, 5, s->lpc[i].lpc_order);
put_bits(pb, 3, s->rc.rice_modifier);
put_bits(pb, 5, s->lpc[i].lpc_order);
// predictor coeff. table
for (j = 0; j < s->lpc[i].lpc_order; j++) {
put_sbits(&s->pbctx, 16, s->lpc[i].lpc_coeff[j]);
}
for (j = 0; j < s->lpc[i].lpc_order; j++)
put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
}
// apply lpc and entropy coding to audio samples
@ -378,22 +390,41 @@ static void write_compressed_frame(AlacEncodeContext *s)
// TODO: determine when this will actually help. for now it's not used.
if (prediction_type == 15) {
// 2nd pass 1st order filter
for (j = s->avctx->frame_size - 1; j > 0; j--)
for (j = s->frame_size - 1; j > 0; j--)
s->predictor_buf[j] -= s->predictor_buf[j - 1];
}
alac_entropy_coder(s);
}
}
put_bits(pb, 3, 7);
flush_put_bits(pb);
return put_bits_count(pb) >> 3;
}
static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
{
int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
}
static av_cold int alac_encode_close(AVCodecContext *avctx)
{
AlacEncodeContext *s = avctx->priv_data;
ff_lpc_end(&s->lpc_ctx);
av_freep(&avctx->extradata);
avctx->extradata_size = 0;
av_freep(&avctx->coded_frame);
return 0;
}
static av_cold int alac_encode_init(AVCodecContext *avctx)
{
AlacEncodeContext *s = avctx->priv_data;
int ret;
uint8_t *alac_extradata = av_mallocz(ALAC_EXTRADATA_SIZE+1);
uint8_t *alac_extradata;
avctx->frame_size = DEFAULT_FRAME_SIZE;
avctx->bits_per_coded_sample = DEFAULT_SAMPLE_SIZE;
avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
if (avctx->sample_fmt != AV_SAMPLE_FMT_S16) {
av_log(avctx, AV_LOG_ERROR, "only pcm_s16 input samples are supported\n");
@ -420,18 +451,29 @@ static av_cold int alac_encode_init(AVCodecContext *avctx)
s->rc.k_modifier = 14;
s->rc.rice_modifier = 4;
s->max_coded_frame_size = 8 + (avctx->frame_size*avctx->channels*avctx->bits_per_coded_sample>>3);
s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
avctx->channels,
DEFAULT_SAMPLE_SIZE);
s->write_sample_size = avctx->bits_per_coded_sample + avctx->channels - 1; // FIXME: consider wasted_bytes
// FIXME: consider wasted_bytes
s->write_sample_size = DEFAULT_SAMPLE_SIZE + avctx->channels - 1;
avctx->extradata = av_mallocz(ALAC_EXTRADATA_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
ret = AVERROR(ENOMEM);
goto error;
}
avctx->extradata_size = ALAC_EXTRADATA_SIZE;
alac_extradata = avctx->extradata;
AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
AV_WB32(alac_extradata+12, avctx->frame_size);
AV_WB8 (alac_extradata+17, avctx->bits_per_coded_sample);
AV_WB8 (alac_extradata+17, DEFAULT_SAMPLE_SIZE);
AV_WB8 (alac_extradata+21, avctx->channels);
AV_WB32(alac_extradata+24, s->max_coded_frame_size);
AV_WB32(alac_extradata+28,
avctx->sample_rate * avctx->channels * avctx->bits_per_coded_sample); // average bitrate
avctx->sample_rate * avctx->channels * DEFAULT_SAMPLE_SIZE); // average bitrate
AV_WB32(alac_extradata+32, avctx->sample_rate);
// Set relevant extradata fields
@ -447,7 +489,8 @@ static av_cold int alac_encode_init(AVCodecContext *avctx)
avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
avctx->min_prediction_order);
return -1;
ret = AVERROR(EINVAL);
goto error;
}
s->min_prediction_order = avctx->min_prediction_order;
@ -459,7 +502,8 @@ static av_cold int alac_encode_init(AVCodecContext *avctx)
avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
avctx->max_prediction_order);
return -1;
ret = AVERROR(EINVAL);
goto error;
}
s->max_prediction_order = avctx->max_prediction_order;
@ -469,80 +513,63 @@ static av_cold int alac_encode_init(AVCodecContext *avctx)
av_log(avctx, AV_LOG_ERROR,
"invalid prediction orders: min=%d max=%d\n",
s->min_prediction_order, s->max_prediction_order);
return -1;
ret = AVERROR(EINVAL);
goto error;
}
avctx->extradata = alac_extradata;
avctx->extradata_size = ALAC_EXTRADATA_SIZE;
avctx->coded_frame = avcodec_alloc_frame();
avctx->coded_frame->key_frame = 1;
if (!avctx->coded_frame) {
ret = AVERROR(ENOMEM);
goto error;
}
s->avctx = avctx;
ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, s->max_prediction_order,
FF_LPC_TYPE_LEVINSON);
if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
s->max_prediction_order,
FF_LPC_TYPE_LEVINSON)) < 0) {
goto error;
}
return 0;
error:
alac_encode_close(avctx);
return ret;
}
static int alac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
int buf_size, void *data)
static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
AlacEncodeContext *s = avctx->priv_data;
PutBitContext *pb = &s->pbctx;
int i, out_bytes, verbatim_flag = 0;
int out_bytes, max_frame_size, ret;
const int16_t *samples = (const int16_t *)frame->data[0];
if (avctx->frame_size > DEFAULT_FRAME_SIZE) {
av_log(avctx, AV_LOG_ERROR, "input frame size exceeded\n");
return -1;
s->frame_size = frame->nb_samples;
if (avctx->frame_size < DEFAULT_FRAME_SIZE)
max_frame_size = get_max_frame_size(s->frame_size, avctx->channels,
DEFAULT_SAMPLE_SIZE);
else
max_frame_size = s->max_coded_frame_size;
if ((ret = ff_alloc_packet(avpkt, 2 * max_frame_size))) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
return ret;
}
if (buf_size < 2 * s->max_coded_frame_size) {
av_log(avctx, AV_LOG_ERROR, "buffer size is too small\n");
return -1;
}
/* use verbatim mode for compression_level 0 */
s->verbatim = !s->compression_level;
verbatim:
init_put_bits(pb, frame, buf_size);
out_bytes = write_frame(s, avpkt, samples);
if (s->compression_level == 0 || verbatim_flag) {
// Verbatim mode
const int16_t *samples = data;
write_frame_header(s, 1);
for (i = 0; i < avctx->frame_size * avctx->channels; i++) {
put_sbits(pb, 16, *samples++);
}
} else {
init_sample_buffers(s, data);
write_frame_header(s, 0);
write_compressed_frame(s);
}
put_bits(pb, 3, 7);
flush_put_bits(pb);
out_bytes = put_bits_count(pb) >> 3;
if (out_bytes > s->max_coded_frame_size) {
if (out_bytes > max_frame_size) {
/* frame too large. use verbatim mode */
if (verbatim_flag || s->compression_level == 0) {
/* still too large. must be an error. */
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
return -1;
}
verbatim_flag = 1;
goto verbatim;
s->verbatim = 1;
out_bytes = write_frame(s, avpkt, samples);
}
return out_bytes;
}
static av_cold int alac_encode_close(AVCodecContext *avctx)
{
AlacEncodeContext *s = avctx->priv_data;
ff_lpc_end(&s->lpc_ctx);
av_freep(&avctx->extradata);
avctx->extradata_size = 0;
av_freep(&avctx->coded_frame);
avpkt->size = out_bytes;
*got_packet_ptr = 1;
return 0;
}
@ -552,7 +579,7 @@ AVCodec ff_alac_encoder = {
.id = CODEC_ID_ALAC,
.priv_data_size = sizeof(AlacEncodeContext),
.init = alac_encode_init,
.encode = alac_encode_frame,
.encode2 = alac_encode_frame,
.close = alac_encode_close,
.capabilities = CODEC_CAP_SMALL_LAST_FRAME,
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,

View File

@ -72,13 +72,14 @@ static int sunrast_decode_frame(AVCodecContext *avctx, void *data,
unsigned int w, h, depth, type, maptype, maplength, stride, x, y, len, alen;
uint8_t *ptr, *ptr2 = NULL;
const uint8_t *bufstart = buf;
int ret;
if (avpkt->size < 32)
return AVERROR_INVALIDDATA;
if (AV_RB32(buf) != RAS_MAGIC) {
av_log(avctx, AV_LOG_ERROR, "this is not sunras encoded data\n");
return -1;
return AVERROR_INVALIDDATA;
}
w = AV_RB32(buf + 4);
@ -95,15 +96,15 @@ static int sunrast_decode_frame(AVCodecContext *avctx, void *data,
}
if (type > RT_FORMAT_IFF) {
av_log(avctx, AV_LOG_ERROR, "invalid (compression) type\n");
return -1;
return AVERROR_INVALIDDATA;
}
if (av_image_check_size(w, h, 0, avctx)) {
av_log(avctx, AV_LOG_ERROR, "invalid image size\n");
return -1;
return AVERROR_INVALIDDATA;
}
if (maptype & ~1) {
av_log(avctx, AV_LOG_ERROR, "invalid colormap type\n");
return -1;
return AVERROR_INVALIDDATA;
}
if (type == RT_FORMAT_TIFF || type == RT_FORMAT_IFF) {
@ -129,7 +130,7 @@ static int sunrast_decode_frame(AVCodecContext *avctx, void *data,
break;
default:
av_log(avctx, AV_LOG_ERROR, "invalid depth\n");
return -1;
return AVERROR_INVALIDDATA;
}
if (p->data[0])
@ -137,9 +138,9 @@ static int sunrast_decode_frame(AVCodecContext *avctx, void *data,
if (w != avctx->width || h != avctx->height)
avcodec_set_dimensions(avctx, w, h);
if (avctx->get_buffer(avctx, p) < 0) {
if ((ret = avctx->get_buffer(avctx, p)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
return ret;
}
p->pict_type = AV_PICTURE_TYPE_I;
@ -155,7 +156,7 @@ static int sunrast_decode_frame(AVCodecContext *avctx, void *data,
if (maplength % 3 || maplength > 768) {
av_log(avctx, AV_LOG_WARNING, "invalid colormap length\n");
return -1;
return AVERROR_INVALIDDATA;
}
ptr = p->data[1];

View File

@ -235,6 +235,9 @@ static av_cold int tta_decode_init(AVCodecContext * avctx)
if (s->channels == 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels\n");
return AVERROR_INVALIDDATA;
} else if (avctx->sample_rate == 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid samplerate\n");
return AVERROR_INVALIDDATA;
}
switch(s->bps) {
@ -354,12 +357,16 @@ static int tta_decode_frame(AVCodecContext *avctx, void *data,
unary--;
}
if (get_bits_left(&s->gb) < k)
return -1;
if (get_bits_left(&s->gb) < k) {
ret = AVERROR_INVALIDDATA;
goto error;
}
if (k) {
if (k > MIN_CACHE_BITS)
return -1;
if (k > MIN_CACHE_BITS) {
ret = AVERROR_INVALIDDATA;
goto error;
}
value = (unary << k) + get_bits(&s->gb, k);
} else
value = unary;
@ -412,8 +419,10 @@ static int tta_decode_frame(AVCodecContext *avctx, void *data,
}
}
if (get_bits_left(&s->gb) < 32)
return -1;
if (get_bits_left(&s->gb) < 32) {
ret = AVERROR_INVALIDDATA;
goto error;
}
skip_bits_long(&s->gb, 32); // frame crc
// convert to output buffer
@ -445,6 +454,11 @@ static int tta_decode_frame(AVCodecContext *avctx, void *data,
*(AVFrame *)data = s->frame;
return buf_size;
error:
// reset decode buffer
if (s->bps == 3)
s->decode_buffer = NULL;
return ret;
}
static av_cold int tta_decode_close(AVCodecContext *avctx) {

View File

@ -909,9 +909,10 @@ static int wavpack_decode_block(AVCodecContext *avctx, int block_no,
} else {
for (j = 0; j < s->decorr[i].value; j++) {
s->decorr[i].samplesA[j] = wp_exp2(AV_RL16(buf)); buf += 2;
if (s->stereo_in)
if (s->stereo_in) {
s->decorr[i].samplesB[j] = wp_exp2(AV_RL16(buf)); buf += 2;
}
}
t += s->decorr[i].value * 2 * (s->stereo_in + 1);
}
}

View File

@ -275,7 +275,7 @@ static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSi
if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
if (filterSize > srcW-2) filterSize=srcW-2;
filterSize = av_clip(filterSize, 1, srcW - 2);
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);

View File

@ -1,4 +1,4 @@
cf9a4b40ab945367cbb0e6cbb4cf37a1 *./tests/data/acodec/alac.m4a
389166 ./tests/data/acodec/alac.m4a
acaed80b0b5bbec7ee9dc0899166a6e2 *./tests/data/acodec/alac.m4a
388910 ./tests/data/acodec/alac.m4a
64151e4bcc2b717aa5a8454d424d6a1f *./tests/data/alac.acodec.out.wav
stddev: 0.00 PSNR:999.99 MAXDIFF: 0 bytes: 1058400/ 1058400

View File

@ -1,53 +1,53 @@
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st:-1 flags:0 ts:-1.000000
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st:-1 flags:1 ts: 1.894167
ret: 0 st: 0 flags:1 dts: 1.857596 pts: 1.857596 pos: 73731 size: 4965
ret: 0 st: 0 flags:1 dts: 1.857596 pts: 1.857596 pos: 73651 size: 4961
ret: 0 st: 0 flags:0 ts: 0.788345
ret: 0 st: 0 flags:1 dts: 0.835918 pts: 0.835918 pos: 29072 size: 3198
ret: 0 st: 0 flags:1 dts: 0.835918 pts: 0.835918 pos: 29036 size: 3194
ret: 0 st: 0 flags:1 ts:-0.317506
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st:-1 flags:0 ts: 2.576668
ret: 0 st: 0 flags:1 dts: 2.600635 pts: 2.600635 pos: 137669 size: 12847
ret: 0 st: 0 flags:1 dts: 2.600635 pts: 2.600635 pos: 137557 size: 12843
ret: 0 st:-1 flags:1 ts: 1.470835
ret: 0 st: 0 flags:1 dts: 1.393197 pts: 1.393197 pos: 50219 size: 4418
ret: 0 st: 0 flags:1 dts: 1.393197 pts: 1.393197 pos: 50159 size: 4414
ret: 0 st: 0 flags:0 ts: 0.365011
ret: 0 st: 0 flags:1 dts: 0.371519 pts: 0.371519 pos: 12962 size: 3213
ret: 0 st: 0 flags:1 dts: 0.371519 pts: 0.371519 pos: 12946 size: 3209
ret: 0 st: 0 flags:1 ts:-0.740839
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st:-1 flags:0 ts: 2.153336
ret: 0 st: 0 flags:1 dts: 2.229116 pts: 2.229116 pos: 101031 size: 7900
ret: 0 st: 0 flags:1 dts: 2.229116 pts: 2.229116 pos: 100935 size: 7896
ret: 0 st:-1 flags:1 ts: 1.047503
ret: 0 st: 0 flags:1 dts: 1.021678 pts: 1.021678 pos: 35362 size: 3035
ret: 0 st: 0 flags:1 dts: 1.021678 pts: 1.021678 pos: 35318 size: 3031
ret: 0 st: 0 flags:0 ts:-0.058322
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st: 0 flags:1 ts: 2.835828
ret: 0 st: 0 flags:1 dts: 2.786395 pts: 2.786395 pos: 163300 size: 12769
ret: 0 st: 0 flags:1 dts: 2.786395 pts: 2.786395 pos: 163180 size: 12765
ret: 0 st:-1 flags:0 ts: 1.730004
ret: 0 st: 0 flags:1 dts: 1.764717 pts: 1.764717 pos: 68756 size: 4975
ret: 0 st: 0 flags:1 dts: 1.764717 pts: 1.764717 pos: 68680 size: 4971
ret: 0 st:-1 flags:1 ts: 0.624171
ret: 0 st: 0 flags:1 dts: 0.557279 pts: 0.557279 pos: 19365 size: 3238
ret: 0 st: 0 flags:1 dts: 0.557279 pts: 0.557279 pos: 19341 size: 3234
ret: 0 st: 0 flags:0 ts:-0.481655
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st: 0 flags:1 ts: 2.412494
ret: 0 st: 0 flags:1 dts: 2.321995 pts: 2.321995 pos: 108931 size: 7890
ret: 0 st: 0 flags:1 dts: 2.321995 pts: 2.321995 pos: 108831 size: 7886
ret: 0 st:-1 flags:0 ts: 1.306672
ret: 0 st: 0 flags:1 dts: 1.393197 pts: 1.393197 pos: 50219 size: 4418
ret: 0 st: 0 flags:1 dts: 1.393197 pts: 1.393197 pos: 50159 size: 4414
ret: 0 st:-1 flags:1 ts: 0.200839
ret: 0 st: 0 flags:1 dts: 0.185760 pts: 0.185760 pos: 6478 size: 3249
ret: 0 st: 0 flags:1 dts: 0.185760 pts: 0.185760 pos: 6470 size: 3245
ret: 0 st: 0 flags:0 ts:-0.904989
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st: 0 flags:1 ts: 1.989184
ret: 0 st: 0 flags:1 dts: 1.950476 pts: 1.950476 pos: 78696 size: 6518
ret: 0 st: 0 flags:1 dts: 1.950476 pts: 1.950476 pos: 78612 size: 6514
ret: 0 st:-1 flags:0 ts: 0.883340
ret: 0 st: 0 flags:1 dts: 0.928798 pts: 0.928798 pos: 32270 size: 3092
ret: 0 st: 0 flags:1 dts: 0.928798 pts: 0.928798 pos: 32230 size: 3088
ret: 0 st:-1 flags:1 ts:-0.222493
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236
ret: 0 st: 0 flags:0 ts: 2.671678
ret: 0 st: 0 flags:1 dts: 2.693515 pts: 2.693515 pos: 150516 size: 12784
ret: 0 st: 0 flags:1 dts: 2.693515 pts: 2.693515 pos: 150400 size: 12780
ret: 0 st: 0 flags:1 ts: 1.565850
ret: 0 st: 0 flags:1 dts: 1.486077 pts: 1.486077 pos: 54637 size: 4558
ret: 0 st: 0 flags:1 dts: 1.486077 pts: 1.486077 pos: 54573 size: 4554
ret: 0 st:-1 flags:0 ts: 0.460008
ret: 0 st: 0 flags:1 dts: 0.464399 pts: 0.464399 pos: 16175 size: 3190
ret: 0 st: 0 flags:1 dts: 0.464399 pts: 0.464399 pos: 16155 size: 3186
ret: 0 st:-1 flags:1 ts:-0.645825
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3240
ret: 0 st: 0 flags:1 dts: 0.000000 pts: 0.000000 pos: 40 size: 3236