1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

avfilter/vf_histogram: remove deprecated stuff

Remove all modes except levels mode.
Users should already switch to other filters with
extended funcionality: vectorscope and waveform.

Signed-off-by: Paul B Mahol <onemda@gmail.com>
This commit is contained in:
Paul B Mahol 2015-12-01 21:51:48 +01:00
parent 25e37f5ea9
commit cde75e3150
2 changed files with 106 additions and 349 deletions

View File

@ -7121,109 +7121,42 @@ Compute and draw a color distribution histogram for the input video.
The computed histogram is a representation of the color component
distribution in an image.
The filter accepts the following options:
@table @option
@item mode
Set histogram mode.
It accepts the following values:
@table @samp
@item levels
Standard histogram that displays the color components distribution in an
image. Displays color graph for each color component. Shows distribution of
Standard histogram displays the color components distribution in an image.
Displays color graph for each color component. Shows distribution of
the Y, U, V, A or R, G, B components, depending on input format, in the
current frame. Below each graph a color component scale meter is shown.
@item color
Displays chroma values (U/V color placement) in a two dimensional
graph (which is called a vectorscope). The brighter a pixel in the
vectorscope, the more pixels of the input frame correspond to that pixel
(i.e., more pixels have this chroma value). The V component is displayed on
the horizontal (X) axis, with the leftmost side being V = 0 and the rightmost
side being V = 255. The U component is displayed on the vertical (Y) axis,
with the top representing U = 0 and the bottom representing U = 255.
The position of a white pixel in the graph corresponds to the chroma value of
a pixel of the input clip. The graph can therefore be used to read the hue
(color flavor) and the saturation (the dominance of the hue in the color). As
the hue of a color changes, it moves around the square. At the center of the
square the saturation is zero, which means that the corresponding pixel has no
color. If the amount of a specific color is increased (while leaving the other
colors unchanged) the saturation increases, and the indicator moves towards
the edge of the square.
@item color2
Chroma values in vectorscope, similar as @code{color} but actual chroma values
are displayed.
@item waveform
Per row/column color component graph. In row mode, the graph on the left side
represents color component value 0 and the right side represents value = 255.
In column mode, the top side represents color component value = 0 and bottom
side represents value = 255.
@end table
Default value is @code{levels}.
The filter accepts the following options:
@table @option
@item level_height
Set height of level in @code{levels}. Default value is @code{200}.
Set height of level. Default value is @code{200}.
Allowed range is [50, 2048].
@item scale_height
Set height of color scale in @code{levels}. Default value is @code{12}.
Set height of color scale. Default value is @code{12}.
Allowed range is [0, 40].
@item step
Set step for @code{waveform} mode. Smaller values are useful to find out how
many values of the same luminance are distributed across input rows/columns.
Default value is @code{10}. Allowed range is [1, 255].
@item waveform_mode
Set mode for @code{waveform}. Can be either @code{row}, or @code{column}.
Default is @code{row}.
@item waveform_mirror
Set mirroring mode for @code{waveform}. @code{0} means unmirrored, @code{1}
means mirrored. In mirrored mode, higher values will be represented on the left
side for @code{row} mode and at the top for @code{column} mode. Default is
@code{0} (unmirrored).
@item display_mode
Set display mode for @code{waveform} and @code{levels}.
Set display mode.
It accepts the following values:
@table @samp
@item parade
Display separate graph for the color components side by side in
@code{row} waveform mode or one below the other in @code{column} waveform mode
for @code{waveform} histogram mode. For @code{levels} histogram mode,
per color component graphs are placed below each other.
Using this display mode in @code{waveform} histogram mode makes it easy to
spot color casts in the highlights and shadows of an image, by comparing the
contours of the top and the bottom graphs of each waveform. Since whites,
grays, and blacks are characterized by exactly equal amounts of red, green,
and blue, neutral areas of the picture should display three waveforms of
roughly equal width/height. If not, the correction is easy to perform by
making level adjustments the three waveforms.
Per color component graphs are placed below each other.
@item overlay
Presents information identical to that in the @code{parade}, except
that the graphs representing color components are superimposed directly
over one another.
This display mode in @code{waveform} histogram mode makes it easier to spot
relative differences or similarities in overlapping areas of the color
components that are supposed to be identical, such as neutral whites, grays,
or blacks.
@end table
Default is @code{parade}.
@item levels_mode
Set mode for @code{levels}. Can be either @code{linear}, or @code{logarithmic}.
Set mode. Can be either @code{linear}, or @code{logarithmic}.
Default is @code{linear}.
@item components
Set what color components to display for mode @code{levels}.
Set what color components to display.
Default is @code{7}.
@end table

View File

@ -29,17 +29,8 @@
#include "internal.h"
#include "video.h"
enum HistogramMode {
MODE_LEVELS,
MODE_WAVEFORM,
MODE_COLOR,
MODE_COLOR2,
MODE_NB
};
typedef struct HistogramContext {
const AVClass *class; ///< AVClass context for log and options purpose
int mode; ///< HistogramMode
unsigned histogram[256*256];
int histogram_size;
int mult;
@ -48,9 +39,6 @@ typedef struct HistogramContext {
const uint8_t *fg_color;
int level_height;
int scale_height;
int step;
int waveform_mode;
int waveform_mirror;
int display_mode;
int levels_mode;
const AVPixFmtDescriptor *desc, *odesc;
@ -63,18 +51,8 @@ typedef struct HistogramContext {
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption histogram_options[] = {
{ "mode", "set histogram mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=MODE_LEVELS}, 0, MODE_NB-1, FLAGS, "mode"},
{ "levels", "standard histogram", 0, AV_OPT_TYPE_CONST, {.i64=MODE_LEVELS}, 0, 0, FLAGS, "mode" },
{ "waveform", "per row/column luminance graph", 0, AV_OPT_TYPE_CONST, {.i64=MODE_WAVEFORM}, 0, 0, FLAGS, "mode" },
{ "color", "chroma values in vectorscope", 0, AV_OPT_TYPE_CONST, {.i64=MODE_COLOR}, 0, 0, FLAGS, "mode" },
{ "color2", "chroma values in vectorscope", 0, AV_OPT_TYPE_CONST, {.i64=MODE_COLOR2}, 0, 0, FLAGS, "mode" },
{ "level_height", "set level height", OFFSET(level_height), AV_OPT_TYPE_INT, {.i64=200}, 50, 2048, FLAGS},
{ "scale_height", "set scale height", OFFSET(scale_height), AV_OPT_TYPE_INT, {.i64=12}, 0, 40, FLAGS},
{ "step", "set waveform step value", OFFSET(step), AV_OPT_TYPE_INT, {.i64=10}, 1, 255, FLAGS},
{ "waveform_mode", "set waveform mode", OFFSET(waveform_mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "waveform_mode"},
{ "row", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "waveform_mode" },
{ "column", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "waveform_mode" },
{ "waveform_mirror", "set waveform mirroring", OFFSET(waveform_mirror), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "waveform_mirror"},
{ "display_mode", "set display mode", OFFSET(display_mode), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "display_mode"},
{ "parade", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "display_mode" },
{ "overlay", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "display_mode" },
@ -87,11 +65,6 @@ static const AVOption histogram_options[] = {
AVFILTER_DEFINE_CLASS(histogram);
static const enum AVPixelFormat color_pix_fmts[] = {
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat levels_in_pix_fmts[] = {
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P,
@ -138,35 +111,13 @@ static const enum AVPixelFormat levels_out_rgb10_pix_fmts[] = {
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat waveform_pix_fmts[] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
static int query_formats(AVFilterContext *ctx)
{
HistogramContext *h = ctx->priv;
const enum AVPixelFormat *pix_fmts;
AVFilterFormats *fmts_list;
int ret;
switch (h->mode) {
case MODE_WAVEFORM:
pix_fmts = waveform_pix_fmts;
break;
case MODE_LEVELS:
{
AVFilterFormats *avff;
const AVPixFmtDescriptor *desc;
const enum AVPixelFormat *out_pix_fmts;
int rgb, i, bits;
int ret;
if (!ctx->inputs[0]->in_formats ||
!ctx->inputs[0]->in_formats->nb_formats) {
@ -203,20 +154,6 @@ static int query_formats(AVFilterContext *ctx)
return ret;
return 0;
}
break;
case MODE_COLOR:
case MODE_COLOR2:
pix_fmts = color_pix_fmts;
break;
default:
av_assert0(0);
}
fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static const uint8_t black_yuva_color[4] = { 0, 127, 127, 255 };
@ -260,30 +197,12 @@ static int config_output(AVFilterLink *outlink)
HistogramContext *h = ctx->priv;
int ncomp = 0, i;
switch (h->mode) {
case MODE_LEVELS:
for (i = 0; i < h->ncomp; i++) {
if ((1 << i) & h->components)
ncomp++;
}
outlink->w = h->histogram_size;
outlink->h = (h->level_height + h->scale_height) * FFMAX(ncomp * h->display_mode, 1);
break;
case MODE_WAVEFORM:
av_log(ctx, AV_LOG_WARNING, "This mode is deprecated, please use waveform filter instead.\n");
if (h->waveform_mode)
outlink->h = 256 * FFMAX(h->ncomp * h->display_mode, 1);
else
outlink->w = 256 * FFMAX(h->ncomp * h->display_mode, 1);
break;
case MODE_COLOR:
case MODE_COLOR2:
av_log(ctx, AV_LOG_WARNING, "This mode is deprecated, use vectorscope filter instead.");
outlink->h = outlink->w = 256;
break;
default:
av_assert0(0);
}
h->odesc = av_pix_fmt_desc_get(outlink->format);
outlink->sample_aspect_ratio = (AVRational){1,1};
@ -291,60 +210,12 @@ static int config_output(AVFilterLink *outlink)
return 0;
}
static void gen_waveform(HistogramContext *h, AVFrame *inpicref, AVFrame *outpicref,
int component, int intensity, int offset, int col_mode)
{
const int plane = h->desc->comp[component].plane;
const int mirror = h->waveform_mirror;
const int is_chroma = (component == 1 || component == 2);
const int shift_w = (is_chroma ? h->desc->log2_chroma_w : 0);
const int shift_h = (is_chroma ? h->desc->log2_chroma_h : 0);
const int src_linesize = inpicref->linesize[plane];
const int dst_linesize = outpicref->linesize[plane];
const int dst_signed_linesize = dst_linesize * (mirror == 1 ? -1 : 1);
uint8_t *src_data = inpicref->data[plane];
uint8_t *dst_data = outpicref->data[plane] + (col_mode ? (offset >> shift_h) * dst_linesize : offset >> shift_w);
uint8_t * const dst_bottom_line = dst_data + dst_linesize * ((256 >> shift_h) - 1);
uint8_t * const dst_line = (mirror ? dst_bottom_line : dst_data);
const uint8_t max = 255 - intensity;
const int src_h = FF_CEIL_RSHIFT(inpicref->height, shift_h);
const int src_w = FF_CEIL_RSHIFT(inpicref->width, shift_w);
uint8_t *dst, *p;
int y;
if (!col_mode && mirror)
dst_data += 256 >> shift_w;
for (y = 0; y < src_h; y++) {
const uint8_t *src_data_end = src_data + src_w;
dst = dst_line;
for (p = src_data; p < src_data_end; p++) {
uint8_t *target;
if (col_mode) {
target = dst++ + dst_signed_linesize * (*p >> shift_h);
} else {
if (mirror)
target = dst_data - (*p >> shift_w);
else
target = dst_data + (*p >> shift_w);
}
if (*target <= max)
*target += intensity;
else
*target = 255;
}
src_data += src_linesize;
dst_data += dst_linesize;
}
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
HistogramContext *h = inlink->dst->priv;
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
uint8_t *dst;
int i, j, k, l, m;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
@ -376,8 +247,6 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
}
}
switch (h->mode) {
case MODE_LEVELS:
for (m = 0, k = 0; k < h->ncomp; k++) {
const int p = h->desc->comp[k].plane;
const int height = h->planeheight[p];
@ -445,51 +314,6 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
memset(h->histogram, 0, h->histogram_size * sizeof(unsigned));
}
break;
case MODE_WAVEFORM:
for (k = 0; k < h->ncomp; k++) {
const int offset = k * 256 * h->display_mode;
gen_waveform(h, in, out, k, h->step, offset, h->waveform_mode);
}
break;
case MODE_COLOR:
for (i = 0; i < inlink->h; i++) {
const int iw1 = i * in->linesize[1];
const int iw2 = i * in->linesize[2];
for (j = 0; j < inlink->w; j++) {
const int pos = in->data[1][iw1 + j] * out->linesize[0] + in->data[2][iw2 + j];
if (out->data[0][pos] < 255)
out->data[0][pos]++;
}
}
for (i = 0; i < 256; i++) {
dst = out->data[0] + i * out->linesize[0];
for (j = 0; j < 256; j++) {
if (!dst[j]) {
out->data[1][i * out->linesize[0] + j] = i;
out->data[2][i * out->linesize[0] + j] = j;
}
}
}
break;
case MODE_COLOR2:
for (i = 0; i < inlink->h; i++) {
const int iw1 = i * in->linesize[1];
const int iw2 = i * in->linesize[2];
for (j = 0; j < inlink->w; j++) {
const int u = in->data[1][iw1 + j];
const int v = in->data[2][iw2 + j];
const int pos = u * out->linesize[0] + v;
if (!out->data[0][pos])
out->data[0][pos] = FFABS(128 - u) + FFABS(128 - v);
out->data[1][pos] = u;
out->data[2][pos] = v;
}
}
break;
default:
av_assert0(0);
}
av_frame_free(&in);
return ff_filter_frame(outlink, out);