1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00

imc: some cosmetics

This commit is contained in:
Kostya Shishkov 2012-05-22 19:45:00 +02:00
parent 177bcc9593
commit d073f122ea

View File

@ -89,7 +89,7 @@ typedef struct {
DSPContext dsp; DSPContext dsp;
FFTContext fft; FFTContext fft;
DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS/2]; DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
float *out_samples; float *out_samples;
} IMCContext; } IMCContext;
@ -99,11 +99,12 @@ static VLC huffman_vlc[4][4];
static const int vlc_offsets[17] = { static const int vlc_offsets[17] = {
0, 640, 1156, 1732, 2308, 2852, 3396, 3924, 0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE}; 4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
};
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]; static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
static av_cold int imc_decode_init(AVCodecContext * avctx) static av_cold int imc_decode_init(AVCodecContext *avctx)
{ {
int i, j, ret; int i, j, ret;
IMCContext *q = avctx->priv_data; IMCContext *q = avctx->priv_data;
@ -116,27 +117,24 @@ static av_cold int imc_decode_init(AVCodecContext * avctx)
q->decoder_reset = 1; q->decoder_reset = 1;
for(i = 0; i < BANDS; i++) for (i = 0; i < BANDS; i++)
q->old_floor[i] = 1.0; q->old_floor[i] = 1.0;
/* Build mdct window, a simple sine window normalized with sqrt(2) */ /* Build mdct window, a simple sine window normalized with sqrt(2) */
ff_sine_window_init(q->mdct_sine_window, COEFFS); ff_sine_window_init(q->mdct_sine_window, COEFFS);
for(i = 0; i < COEFFS; i++) for (i = 0; i < COEFFS; i++)
q->mdct_sine_window[i] *= sqrt(2.0); q->mdct_sine_window[i] *= sqrt(2.0);
for(i = 0; i < COEFFS/2; i++){ for (i = 0; i < COEFFS / 2; i++) {
q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI); q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI); q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI); r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI); r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
if (i & 0x1) if (i & 0x1) {
{
q->pre_coef1[i] = (r1 + r2) * sqrt(2.0); q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0); q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
} } else {
else
{
q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0); q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
q->pre_coef2[i] = (r1 - r2) * sqrt(2.0); q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
} }
@ -146,13 +144,12 @@ static av_cold int imc_decode_init(AVCodecContext * avctx)
/* Generate a square root table */ /* Generate a square root table */
for(i = 0; i < 30; i++) { for (i = 0; i < 30; i++)
q->sqrt_tab[i] = sqrt(i); q->sqrt_tab[i] = sqrt(i);
}
/* initialize the VLC tables */ /* initialize the VLC tables */
for(i = 0; i < 4 ; i++) { for (i = 0; i < 4 ; i++) {
for(j = 0; j < 4; j++) { for (j = 0; j < 4; j++) {
huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]]; huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j]; huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i], init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
@ -160,7 +157,7 @@ static av_cold int imc_decode_init(AVCodecContext * avctx)
imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC); imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
} }
} }
q->one_div_log2 = 1/log(2); q->one_div_log2 = 1 / log(2);
if ((ret = ff_fft_init(&q->fft, 7, 1))) { if ((ret = ff_fft_init(&q->fft, 7, 1))) {
av_log(avctx, AV_LOG_INFO, "FFT init failed\n"); av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
@ -176,8 +173,9 @@ static av_cold int imc_decode_init(AVCodecContext * avctx)
return 0; return 0;
} }
static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT, static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
float* flcoeffs3, float* flcoeffs5) float *flcoeffs2, int *bandWidthT,
float *flcoeffs3, float *flcoeffs5)
{ {
float workT1[BANDS]; float workT1[BANDS];
float workT2[BANDS]; float workT2[BANDS];
@ -186,13 +184,13 @@ static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeff
float accum = 0.0; float accum = 0.0;
int i, cnt2; int i, cnt2;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
flcoeffs5[i] = workT2[i] = 0.0; flcoeffs5[i] = workT2[i] = 0.0;
if (bandWidthT[i]){ if (bandWidthT[i]) {
workT1[i] = flcoeffs1[i] * flcoeffs1[i]; workT1[i] = flcoeffs1[i] * flcoeffs1[i];
flcoeffs3[i] = 2.0 * flcoeffs2[i]; flcoeffs3[i] = 2.0 * flcoeffs2[i];
} else { } else {
workT1[i] = 0.0; workT1[i] = 0.0;
flcoeffs3[i] = -30000.0; flcoeffs3[i] = -30000.0;
} }
workT3[i] = bandWidthT[i] * workT1[i] * 0.01; workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
@ -200,37 +198,38 @@ static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeff
workT3[i] = 0.0; workT3[i] = 0.0;
} }
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++) for (cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i]; flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
workT2[cnt2-1] = workT2[cnt2-1] + workT3[i]; workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
} }
for(i = 1; i < BANDS; i++) { for (i = 1; i < BANDS; i++) {
accum = (workT2[i-1] + accum) * imc_weights1[i-1]; accum = (workT2[i - 1] + accum) * imc_weights1[i - 1];
flcoeffs5[i] += accum; flcoeffs5[i] += accum;
} }
for(i = 0; i < BANDS; i++) for (i = 0; i < BANDS; i++)
workT2[i] = 0.0; workT2[i] = 0.0;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--) for (cnt2 = i - 1; cnt2 > cyclTab2[i]; cnt2--)
flcoeffs5[cnt2] += workT3[i]; flcoeffs5[cnt2] += workT3[i];
workT2[cnt2+1] += workT3[i]; workT2[cnt2+1] += workT3[i];
} }
accum = 0.0; accum = 0.0;
for(i = BANDS-2; i >= 0; i--) { for (i = BANDS-2; i >= 0; i--) {
accum = (workT2[i+1] + accum) * imc_weights2[i]; accum = (workT2[i+1] + accum) * imc_weights2[i];
flcoeffs5[i] += accum; flcoeffs5[i] += accum;
//there is missing code here, but it seems to never be triggered // there is missing code here, but it seems to never be triggered
} }
} }
static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs) static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
int *levlCoeffs)
{ {
int i; int i;
VLC *hufftab[4]; VLC *hufftab[4];
@ -245,41 +244,42 @@ static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* le
hufftab[3] = &huffman_vlc[s][3]; hufftab[3] = &huffman_vlc[s][3];
cb_sel = imc_cb_select[s]; cb_sel = imc_cb_select[s];
if(stream_format_code & 4) if (stream_format_code & 4)
start = 1; start = 1;
if(start) if (start)
levlCoeffs[0] = get_bits(&q->gb, 7); levlCoeffs[0] = get_bits(&q->gb, 7);
for(i = start; i < BANDS; i++){ for (i = start; i < BANDS; i++) {
levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2); levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
if(levlCoeffs[i] == 17) hufftab[cb_sel[i]]->bits, 2);
if (levlCoeffs[i] == 17)
levlCoeffs[i] += get_bits(&q->gb, 4); levlCoeffs[i] += get_bits(&q->gb, 4);
} }
} }
static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1, static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
float* flcoeffs2) float *flcoeffs1, float *flcoeffs2)
{ {
int i, level; int i, level;
float tmp, tmp2; float tmp, tmp2;
//maybe some frequency division thingy // maybe some frequency division thingy
flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125 flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
flcoeffs2[0] = log(flcoeffs1[0])/log(2); flcoeffs2[0] = log(flcoeffs1[0]) / log(2);
tmp = flcoeffs1[0]; tmp = flcoeffs1[0];
tmp2 = flcoeffs2[0]; tmp2 = flcoeffs2[0];
for(i = 1; i < BANDS; i++) { for (i = 1; i < BANDS; i++) {
level = levlCoeffBuf[i]; level = levlCoeffBuf[i];
if (level == 16) { if (level == 16) {
flcoeffs1[i] = 1.0; flcoeffs1[i] = 1.0;
flcoeffs2[i] = 0.0; flcoeffs2[i] = 0.0;
} else { } else {
if (level < 17) if (level < 17)
level -=7; level -= 7;
else if (level <= 24) else if (level <= 24)
level -=32; level -= 32;
else else
level -=16; level -= 16;
tmp *= imc_exp_tab[15 + level]; tmp *= imc_exp_tab[15 + level];
tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25 tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
@ -290,17 +290,20 @@ static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, floa
} }
static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1, static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
float* flcoeffs2) { float *old_floor, float *flcoeffs1,
float *flcoeffs2)
{
int i; int i;
//FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
// and flcoeffs2 old scale factors * and flcoeffs2 old scale factors
// might be incomplete due to a missing table that is in the binary code * might be incomplete due to a missing table that is in the binary code
for(i = 0; i < BANDS; i++) { */
for (i = 0; i < BANDS; i++) {
flcoeffs1[i] = 0; flcoeffs1[i] = 0;
if(levlCoeffBuf[i] < 16) { if (levlCoeffBuf[i] < 16) {
flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i]; flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25 flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
} else { } else {
flcoeffs1[i] = old_floor[i]; flcoeffs1[i] = old_floor[i];
} }
@ -310,7 +313,9 @@ static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, flo
/** /**
* Perform bit allocation depending on bits available * Perform bit allocation depending on bits available
*/ */
static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) { static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
int flag)
{
int i, j; int i, j;
const float limit = -1.e20; const float limit = -1.e20;
float highest = 0.0; float highest = 0.0;
@ -327,31 +332,30 @@ static int bit_allocation (IMCContext* q, int stream_format_code, int freebits,
int flg; int flg;
int found_indx = 0; int found_indx = 0;
for(i = 0; i < BANDS; i++) for (i = 0; i < BANDS; i++)
highest = FFMAX(highest, q->flcoeffs1[i]); highest = FFMAX(highest, q->flcoeffs1[i]);
for(i = 0; i < BANDS-1; i++) { for (i = 0; i < BANDS - 1; i++)
q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2); q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i]) / log(2);
}
q->flcoeffs4[BANDS - 1] = limit; q->flcoeffs4[BANDS - 1] = limit;
highest = highest * 0.25; highest = highest * 0.25;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
indx = -1; indx = -1;
if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i]) if ((band_tab[i + 1] - band_tab[i]) == q->bandWidthT[i])
indx = 0; indx = 0;
if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i]) if ((band_tab[i + 1] - band_tab[i]) > q->bandWidthT[i])
indx = 1; indx = 1;
if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i]) if (((band_tab[i + 1] - band_tab[i]) / 2) >= q->bandWidthT[i])
indx = 2; indx = 2;
if (indx == -1) if (indx == -1)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag]; q->flcoeffs4[i] += xTab[(indx * 2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
} }
if (stream_format_code & 0x2) { if (stream_format_code & 0x2) {
@ -361,22 +365,23 @@ static int bit_allocation (IMCContext* q, int stream_format_code, int freebits,
q->flcoeffs4[3] = limit; q->flcoeffs4[3] = limit;
} }
for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) { for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
iacc += q->bandWidthT[i]; iacc += q->bandWidthT[i];
summa += q->bandWidthT[i] * q->flcoeffs4[i]; summa += q->bandWidthT[i] * q->flcoeffs4[i];
} }
q->bandWidthT[BANDS-1] = 0; q->bandWidthT[BANDS - 1] = 0;
summa = (summa * 0.5 - freebits) / iacc; summa = (summa * 0.5 - freebits) / iacc;
for(i = 0; i < BANDS/2; i++) { for (i = 0; i < BANDS / 2; i++) {
rres = summer - freebits; rres = summer - freebits;
if((rres >= -8) && (rres <= 8)) break; if ((rres >= -8) && (rres <= 8))
break;
summer = 0; summer = 0;
iacc = 0; iacc = 0;
for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) { for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6); cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
q->bitsBandT[j] = cwlen; q->bitsBandT[j] = cwlen;
@ -392,32 +397,33 @@ static int bit_allocation (IMCContext* q, int stream_format_code, int freebits,
t2 = -1; t2 = -1;
if (i == 0) if (i == 0)
flg = t2; flg = t2;
if(flg != t2) if (flg != t2)
t1++; t1++;
summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa; summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
} }
for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) { for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
for(j = band_tab[i]; j < band_tab[i+1]; j++) for (j = band_tab[i]; j < band_tab[i + 1]; j++)
q->CWlengthT[j] = q->bitsBandT[i]; q->CWlengthT[j] = q->bitsBandT[i];
} }
if (freebits > summer) { if (freebits > summer) {
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); workT[i] = (q->bitsBandT[i] == 6) ? -1.e20
: (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
} }
highest = 0.0; highest = 0.0;
do{ do {
if (highest <= -1.e20) if (highest <= -1.e20)
break; break;
found_indx = 0; found_indx = 0;
highest = -1.e20; highest = -1.e20;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (workT[i] > highest) { if (workT[i] > highest) {
highest = workT[i]; highest = workT[i];
found_indx = i; found_indx = i;
@ -426,19 +432,20 @@ static int bit_allocation (IMCContext* q, int stream_format_code, int freebits,
if (highest > -1.e20) { if (highest > -1.e20) {
workT[found_indx] -= 2.0; workT[found_indx] -= 2.0;
if (++(q->bitsBandT[found_indx]) == 6) if (++q->bitsBandT[found_indx] == 6)
workT[found_indx] = -1.e20; workT[found_indx] = -1.e20;
for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){ for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
q->CWlengthT[j]++; q->CWlengthT[j]++;
summer++; summer++;
} }
} }
}while (freebits > summer); } while (freebits > summer);
} }
if (freebits < summer) { if (freebits < summer) {
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20; workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585)
: 1.e20;
} }
if (stream_format_code & 0x2) { if (stream_format_code & 0x2) {
workT[0] = 1.e20; workT[0] = 1.e20;
@ -446,23 +453,24 @@ static int bit_allocation (IMCContext* q, int stream_format_code, int freebits,
workT[2] = 1.e20; workT[2] = 1.e20;
workT[3] = 1.e20; workT[3] = 1.e20;
} }
while (freebits < summer){ while (freebits < summer) {
lowest = 1.e10; lowest = 1.e10;
low_indx = 0; low_indx = 0;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (workT[i] < lowest) { if (workT[i] < lowest) {
lowest = workT[i]; lowest = workT[i];
low_indx = i; low_indx = i;
} }
} }
//if(lowest >= 1.e10) break; // if (lowest >= 1.e10)
// break;
workT[low_indx] = lowest + 2.0; workT[low_indx] = lowest + 2.0;
if (!(--q->bitsBandT[low_indx])) if (!--q->bitsBandT[low_indx])
workT[low_indx] = 1.e20; workT[low_indx] = 1.e20;
for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){ for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
if(q->CWlengthT[j] > 0){ if (q->CWlengthT[j] > 0) {
q->CWlengthT[j]--; q->CWlengthT[j]--;
summer--; summer--;
} }
@ -472,49 +480,51 @@ static int bit_allocation (IMCContext* q, int stream_format_code, int freebits,
return 0; return 0;
} }
static void imc_get_skip_coeff(IMCContext* q) { static void imc_get_skip_coeff(IMCContext *q)
{
int i, j; int i, j;
memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits)); memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount)); memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (!q->bandFlagsBuf[i] || !q->bandWidthT[i]) if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
continue; continue;
if (!q->skipFlagRaw[i]) { if (!q->skipFlagRaw[i]) {
q->skipFlagBits[i] = band_tab[i+1] - band_tab[i]; q->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
for(j = band_tab[i]; j < band_tab[i+1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
if ((q->skipFlags[j] = get_bits1(&q->gb))) q->skipFlags[j] = get_bits1(&q->gb);
if (q->skipFlags[j])
q->skipFlagCount[i]++; q->skipFlagCount[i]++;
} }
} else { } else {
for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) { for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
if(!get_bits1(&q->gb)){//0 if (!get_bits1(&q->gb)) { // 0
q->skipFlagBits[i]++; q->skipFlagBits[i]++;
q->skipFlags[j]=1; q->skipFlags[j] = 1;
q->skipFlags[j+1]=1; q->skipFlags[j + 1] = 1;
q->skipFlagCount[i] += 2; q->skipFlagCount[i] += 2;
}else{ } else {
if(get_bits1(&q->gb)){//11 if (get_bits1(&q->gb)) { // 11
q->skipFlagBits[i] +=2; q->skipFlagBits[i] += 2;
q->skipFlags[j]=0; q->skipFlags[j] = 0;
q->skipFlags[j+1]=1; q->skipFlags[j + 1] = 1;
q->skipFlagCount[i]++; q->skipFlagCount[i]++;
}else{ } else {
q->skipFlagBits[i] +=3; q->skipFlagBits[i] += 3;
q->skipFlags[j+1]=0; q->skipFlags[j + 1] = 0;
if(!get_bits1(&q->gb)){//100 if (!get_bits1(&q->gb)) { // 100
q->skipFlags[j]=1; q->skipFlags[j] = 1;
q->skipFlagCount[i]++; q->skipFlagCount[i]++;
}else{//101 } else { // 101
q->skipFlags[j]=0; q->skipFlags[j] = 0;
} }
} }
} }
} }
if (j < band_tab[i+1]) { if (j < band_tab[i + 1]) {
q->skipFlagBits[i]++; q->skipFlagBits[i]++;
if ((q->skipFlags[j] = get_bits1(&q->gb))) if ((q->skipFlags[j] = get_bits1(&q->gb)))
q->skipFlagCount[i]++; q->skipFlagCount[i]++;
@ -526,24 +536,26 @@ static void imc_get_skip_coeff(IMCContext* q) {
/** /**
* Increase highest' band coefficient sizes as some bits won't be used * Increase highest' band coefficient sizes as some bits won't be used
*/ */
static void imc_adjust_bit_allocation (IMCContext* q, int summer) { static void imc_adjust_bit_allocation(IMCContext *q, int summer)
{
float workT[32]; float workT[32];
int corrected = 0; int corrected = 0;
int i, j; int i, j;
float highest = 0; float highest = 0;
int found_indx=0; int found_indx = 0;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); workT[i] = (q->bitsBandT[i] == 6) ? -1.e20
: (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
} }
while (corrected < summer) { while (corrected < summer) {
if(highest <= -1.e20) if (highest <= -1.e20)
break; break;
highest = -1.e20; highest = -1.e20;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (workT[i] > highest) { if (workT[i] > highest) {
highest = workT[i]; highest = workT[i];
found_indx = i; found_indx = i;
@ -555,7 +567,7 @@ static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
if (++(q->bitsBandT[found_indx]) == 6) if (++(q->bitsBandT[found_indx]) == 6)
workT[found_indx] = -1.e20; workT[found_indx] = -1.e20;
for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) { for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) { if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
q->CWlengthT[j]++; q->CWlengthT[j]++;
corrected++; corrected++;
@ -565,61 +577,65 @@ static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
} }
} }
static void imc_imdct256(IMCContext *q) { static void imc_imdct256(IMCContext *q)
{
int i; int i;
float re, im; float re, im;
/* prerotation */ /* prerotation */
for(i=0; i < COEFFS/2; i++){ for (i = 0; i < COEFFS / 2; i++) {
q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) - q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef2[i] * q->CWdecoded[i*2]); (q->pre_coef2[i] * q->CWdecoded[i * 2]);
q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) - q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef1[i] * q->CWdecoded[i*2]); (q->pre_coef1[i] * q->CWdecoded[i * 2]);
} }
/* FFT */ /* FFT */
q->fft.fft_permute(&q->fft, q->samples); q->fft.fft_permute(&q->fft, q->samples);
q->fft.fft_calc (&q->fft, q->samples); q->fft.fft_calc(&q->fft, q->samples);
/* postrotation, window and reorder */ /* postrotation, window and reorder */
for(i = 0; i < COEFFS/2; i++){ for (i = 0; i < COEFFS / 2; i++) {
re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]); re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]); im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re); q->out_samples[i * 2] = (q->mdct_sine_window[COEFFS - 1 - i * 2] * q->last_fft_im[i])
q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re); + (q->mdct_sine_window[i * 2] * re);
q->out_samples[COEFFS - 1 - i * 2] = (q->mdct_sine_window[i * 2] * q->last_fft_im[i])
- (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
q->last_fft_im[i] = im; q->last_fft_im[i] = im;
} }
} }
static int inverse_quant_coeff (IMCContext* q, int stream_format_code) { static int inverse_quant_coeff(IMCContext *q, int stream_format_code)
{
int i, j; int i, j;
int middle_value, cw_len, max_size; int middle_value, cw_len, max_size;
const float* quantizer; const float *quantizer;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
for(j = band_tab[i]; j < band_tab[i+1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->CWdecoded[j] = 0; q->CWdecoded[j] = 0;
cw_len = q->CWlengthT[j]; cw_len = q->CWlengthT[j];
if (cw_len <= 0 || q->skipFlags[j]) if (cw_len <= 0 || q->skipFlags[j])
continue; continue;
max_size = 1 << cw_len; max_size = 1 << cw_len;
middle_value = max_size >> 1; middle_value = max_size >> 1;
if (q->codewords[j] >= max_size || q->codewords[j] < 0) if (q->codewords[j] >= max_size || q->codewords[j] < 0)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
if (cw_len >= 4){ if (cw_len >= 4) {
quantizer = imc_quantizer2[(stream_format_code & 2) >> 1]; quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
if (q->codewords[j] >= middle_value) if (q->codewords[j] >= middle_value)
q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i]; q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
else else
q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i]; q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
}else{ }else{
quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)]; quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
if (q->codewords[j] >= middle_value) if (q->codewords[j] >= middle_value)
q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i]; q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
else else
q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i]; q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
} }
@ -629,22 +645,24 @@ static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
} }
static int imc_get_coeffs (IMCContext* q) { static int imc_get_coeffs(IMCContext *q)
{
int i, j, cw_len, cw; int i, j, cw_len, cw;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if(!q->sumLenArr[i]) continue; if (!q->sumLenArr[i])
continue;
if (q->bandFlagsBuf[i] || q->bandWidthT[i]) { if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
for(j = band_tab[i]; j < band_tab[i+1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
cw_len = q->CWlengthT[j]; cw_len = q->CWlengthT[j];
cw = 0; cw = 0;
if (get_bits_count(&q->gb) + cw_len > 512){ if (get_bits_count(&q->gb) + cw_len > 512) {
//av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len); // av_log(NULL, 0, "Band %i coeff %i cw_len %i\n", i, j, cw_len);
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j])) if (cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
cw = get_bits(&q->gb, cw_len); cw = get_bits(&q->gb, cw_len);
q->codewords[j] = cw; q->codewords[j] = cw;
@ -654,7 +672,7 @@ static int imc_get_coeffs (IMCContext* q) {
return 0; return 0;
} }
static int imc_decode_frame(AVCodecContext * avctx, void *data, static int imc_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt) int *got_frame_ptr, AVPacket *avpkt)
{ {
const uint8_t *buf = avpkt->data; const uint8_t *buf = avpkt->data;
@ -680,7 +698,7 @@ static int imc_decode_frame(AVCodecContext * avctx, void *data,
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret; return ret;
} }
q->out_samples = (float *)q->frame.data[0]; q->out_samples = (float*)q->frame.data[0];
q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2); q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
@ -695,7 +713,7 @@ static int imc_decode_frame(AVCodecContext * avctx, void *data,
} }
stream_format_code = get_bits(&q->gb, 3); stream_format_code = get_bits(&q->gb, 3);
if(stream_format_code & 1){ if (stream_format_code & 1) {
av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code); av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
@ -705,10 +723,12 @@ static int imc_decode_frame(AVCodecContext * avctx, void *data,
if (stream_format_code & 0x04) if (stream_format_code & 0x04)
q->decoder_reset = 1; q->decoder_reset = 1;
if(q->decoder_reset) { if (q->decoder_reset) {
memset(q->out_samples, 0, sizeof(q->out_samples)); memset(q->out_samples, 0, sizeof(q->out_samples));
for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0; for (i = 0; i < BANDS; i++)
for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0; q->old_floor[i] = 1.0;
for (i = 0; i < COEFFS; i++)
q->CWdecoded[i] = 0;
q->decoder_reset = 0; q->decoder_reset = 0;
} }
@ -716,22 +736,24 @@ static int imc_decode_frame(AVCodecContext * avctx, void *data,
imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf); imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
if (stream_format_code & 0x4) if (stream_format_code & 0x4)
imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2); imc_decode_level_coefficients(q, q->levlCoeffBuf,
q->flcoeffs1, q->flcoeffs2);
else else
imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2); imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor,
q->flcoeffs1, q->flcoeffs2);
memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float)); memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
counter = 0; counter = 0;
for (i=0 ; i<BANDS ; i++) { for (i = 0; i < BANDS; i++) {
if (q->levlCoeffBuf[i] == 16) { if (q->levlCoeffBuf[i] == 16) {
q->bandWidthT[i] = 0; q->bandWidthT[i] = 0;
counter++; counter++;
} else } else
q->bandWidthT[i] = band_tab[i+1] - band_tab[i]; q->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
} }
memset(q->bandFlagsBuf, 0, BANDS * sizeof(int)); memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
for(i = 0; i < BANDS-1; i++) { for (i = 0; i < BANDS - 1; i++) {
if (q->bandWidthT[i]) if (q->bandWidthT[i])
q->bandFlagsBuf[i] = get_bits1(&q->gb); q->bandFlagsBuf[i] = get_bits1(&q->gb);
} }
@ -747,78 +769,79 @@ static int imc_decode_frame(AVCodecContext * avctx, void *data,
q->CWlengthT[0] = 5; q->CWlengthT[0] = 5;
q->CWlengthT[1] = 5; q->CWlengthT[1] = 5;
q->CWlengthT[2] = 5; q->CWlengthT[2] = 5;
for(i = 1; i < 4; i++){ for (i = 1; i < 4; i++) {
bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5; bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
q->bitsBandT[i] = bits; q->bitsBandT[i] = bits;
for(j = band_tab[i]; j < band_tab[i+1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->CWlengthT[j] = bits; q->CWlengthT[j] = bits;
bitscount += bits; bitscount += bits;
} }
} }
} }
if((ret = bit_allocation (q, stream_format_code, if ((ret = bit_allocation(q, stream_format_code,
512 - bitscount - get_bits_count(&q->gb), flag)) < 0) { 512 - bitscount - get_bits_count(&q->gb),
flag)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n"); av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
q->decoder_reset = 1; q->decoder_reset = 1;
return ret; return ret;
} }
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
q->sumLenArr[i] = 0; q->sumLenArr[i] = 0;
q->skipFlagRaw[i] = 0; q->skipFlagRaw[i] = 0;
for(j = band_tab[i]; j < band_tab[i+1]; j++) for (j = band_tab[i]; j < band_tab[i + 1]; j++)
q->sumLenArr[i] += q->CWlengthT[j]; q->sumLenArr[i] += q->CWlengthT[j];
if (q->bandFlagsBuf[i]) if (q->bandFlagsBuf[i])
if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0)) if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
q->skipFlagRaw[i] = 1; q->skipFlagRaw[i] = 1;
} }
imc_get_skip_coeff(q); imc_get_skip_coeff(q);
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
q->flcoeffs6[i] = q->flcoeffs1[i]; q->flcoeffs6[i] = q->flcoeffs1[i];
/* band has flag set and at least one coded coefficient */ /* band has flag set and at least one coded coefficient */
if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){ if (q->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != q->skipFlagCount[i]) {
q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] / q->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])]; q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - q->skipFlagCount[i])];
} }
} }
/* calculate bits left, bits needed and adjust bit allocation */ /* calculate bits left, bits needed and adjust bit allocation */
bits = summer = 0; bits = summer = 0;
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
if (q->bandFlagsBuf[i]) { if (q->bandFlagsBuf[i]) {
for(j = band_tab[i]; j < band_tab[i+1]; j++) { for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
if(q->skipFlags[j]) { if (q->skipFlags[j]) {
summer += q->CWlengthT[j]; summer += q->CWlengthT[j];
q->CWlengthT[j] = 0; q->CWlengthT[j] = 0;
} }
} }
bits += q->skipFlagBits[i]; bits += q->skipFlagBits[i];
summer -= q->skipFlagBits[i]; summer -= q->skipFlagBits[i];
} }
} }
imc_adjust_bit_allocation(q, summer); imc_adjust_bit_allocation(q, summer);
for(i = 0; i < BANDS; i++) { for (i = 0; i < BANDS; i++) {
q->sumLenArr[i] = 0; q->sumLenArr[i] = 0;
for(j = band_tab[i]; j < band_tab[i+1]; j++) for (j = band_tab[i]; j < band_tab[i + 1]; j++)
if (!q->skipFlags[j]) if (!q->skipFlags[j])
q->sumLenArr[i] += q->CWlengthT[j]; q->sumLenArr[i] += q->CWlengthT[j];
} }
memset(q->codewords, 0, sizeof(q->codewords)); memset(q->codewords, 0, sizeof(q->codewords));
if(imc_get_coeffs(q) < 0) { if (imc_get_coeffs(q) < 0) {
av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n"); av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
q->decoder_reset = 1; q->decoder_reset = 1;
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
if(inverse_quant_coeff(q, stream_format_code) < 0) { if (inverse_quant_coeff(q, stream_format_code) < 0) {
av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n"); av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
q->decoder_reset = 1; q->decoder_reset = 1;
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;