mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-02-04 06:08:26 +02:00
lavfi/dnn: Task-based Inference in Native Backend
This commit rearranges the code in Native Backend to use the TaskItem for inference. Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit is contained in:
parent
d91542e618
commit
d39580ac11
@ -45,9 +45,29 @@ static const AVClass dnn_native_class = {
|
|||||||
.category = AV_CLASS_CATEGORY_FILTER,
|
.category = AV_CLASS_CATEGORY_FILTER,
|
||||||
};
|
};
|
||||||
|
|
||||||
static DNNReturnType execute_model_native(const DNNModel *model, const char *input_name, AVFrame *in_frame,
|
static DNNReturnType execute_model_native(Queue *inference_queue);
|
||||||
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
|
|
||||||
int do_ioproc);
|
static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue)
|
||||||
|
{
|
||||||
|
NativeModel *native_model = task->model;
|
||||||
|
NativeContext *ctx = &native_model->ctx;
|
||||||
|
InferenceItem *inference = av_malloc(sizeof(*inference));
|
||||||
|
|
||||||
|
if (!inference) {
|
||||||
|
av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for InferenceItem\n");
|
||||||
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
task->inference_todo = 1;
|
||||||
|
task->inference_done = 0;
|
||||||
|
inference->task = task;
|
||||||
|
|
||||||
|
if (ff_queue_push_back(inference_queue, inference) < 0) {
|
||||||
|
av_log(ctx, AV_LOG_ERROR, "Failed to push back inference_queue.\n");
|
||||||
|
av_freep(&inference);
|
||||||
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
return DNN_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
static DNNReturnType get_input_native(void *model, DNNData *input, const char *input_name)
|
static DNNReturnType get_input_native(void *model, DNNData *input, const char *input_name)
|
||||||
{
|
{
|
||||||
@ -78,34 +98,36 @@ static DNNReturnType get_input_native(void *model, DNNData *input, const char *i
|
|||||||
static DNNReturnType get_output_native(void *model, const char *input_name, int input_width, int input_height,
|
static DNNReturnType get_output_native(void *model, const char *input_name, int input_width, int input_height,
|
||||||
const char *output_name, int *output_width, int *output_height)
|
const char *output_name, int *output_width, int *output_height)
|
||||||
{
|
{
|
||||||
DNNReturnType ret;
|
DNNReturnType ret = 0;
|
||||||
NativeModel *native_model = model;
|
NativeModel *native_model = model;
|
||||||
NativeContext *ctx = &native_model->ctx;
|
NativeContext *ctx = &native_model->ctx;
|
||||||
AVFrame *in_frame = av_frame_alloc();
|
TaskItem task;
|
||||||
AVFrame *out_frame = NULL;
|
DNNExecBaseParams exec_params = {
|
||||||
|
.input_name = input_name,
|
||||||
|
.output_names = &output_name,
|
||||||
|
.nb_output = 1,
|
||||||
|
.in_frame = NULL,
|
||||||
|
.out_frame = NULL,
|
||||||
|
};
|
||||||
|
|
||||||
if (!in_frame) {
|
if (ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx) != DNN_SUCCESS) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Could not allocate memory for input frame\n");
|
ret = DNN_ERROR;
|
||||||
return DNN_ERROR;
|
goto err;
|
||||||
}
|
}
|
||||||
|
|
||||||
out_frame = av_frame_alloc();
|
if (extract_inference_from_task(&task, native_model->inference_queue) != DNN_SUCCESS) {
|
||||||
|
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
|
||||||
if (!out_frame) {
|
ret = DNN_ERROR;
|
||||||
av_log(ctx, AV_LOG_ERROR, "Could not allocate memory for output frame\n");
|
goto err;
|
||||||
av_frame_free(&in_frame);
|
|
||||||
return DNN_ERROR;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
in_frame->width = input_width;
|
ret = execute_model_native(native_model->inference_queue);
|
||||||
in_frame->height = input_height;
|
*output_width = task.out_frame->width;
|
||||||
|
*output_height = task.out_frame->height;
|
||||||
|
|
||||||
ret = execute_model_native(native_model->model, input_name, in_frame, &output_name, 1, out_frame, 0);
|
err:
|
||||||
*output_width = out_frame->width;
|
av_frame_free(&task.out_frame);
|
||||||
*output_height = out_frame->height;
|
av_frame_free(&task.in_frame);
|
||||||
|
|
||||||
av_frame_free(&out_frame);
|
|
||||||
av_frame_free(&in_frame);
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -190,6 +212,11 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType f
|
|||||||
goto fail;
|
goto fail;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
native_model->inference_queue = ff_queue_create();
|
||||||
|
if (!native_model->inference_queue) {
|
||||||
|
goto fail;
|
||||||
|
}
|
||||||
|
|
||||||
for (layer = 0; layer < native_model->layers_num; ++layer){
|
for (layer = 0; layer < native_model->layers_num; ++layer){
|
||||||
layer_type = (int32_t)avio_rl32(model_file_context);
|
layer_type = (int32_t)avio_rl32(model_file_context);
|
||||||
dnn_size += 4;
|
dnn_size += 4;
|
||||||
@ -259,50 +286,66 @@ fail:
|
|||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
static DNNReturnType execute_model_native(const DNNModel *model, const char *input_name, AVFrame *in_frame,
|
static DNNReturnType execute_model_native(Queue *inference_queue)
|
||||||
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
|
|
||||||
int do_ioproc)
|
|
||||||
{
|
{
|
||||||
NativeModel *native_model = model->model;
|
NativeModel *native_model = NULL;
|
||||||
NativeContext *ctx = &native_model->ctx;
|
NativeContext *ctx = NULL;
|
||||||
int32_t layer;
|
int32_t layer;
|
||||||
DNNData input, output;
|
DNNData input, output;
|
||||||
DnnOperand *oprd = NULL;
|
DnnOperand *oprd = NULL;
|
||||||
|
InferenceItem *inference = NULL;
|
||||||
|
TaskItem *task = NULL;
|
||||||
|
DNNReturnType ret = 0;
|
||||||
|
|
||||||
|
inference = ff_queue_pop_front(inference_queue);
|
||||||
|
if (!inference) {
|
||||||
|
av_log(NULL, AV_LOG_ERROR, "Failed to get inference item\n");
|
||||||
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
|
}
|
||||||
|
task = inference->task;
|
||||||
|
native_model = task->model;
|
||||||
|
ctx = &native_model->ctx;
|
||||||
|
|
||||||
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
|
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
|
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < native_model->operands_num; ++i) {
|
for (int i = 0; i < native_model->operands_num; ++i) {
|
||||||
oprd = &native_model->operands[i];
|
oprd = &native_model->operands[i];
|
||||||
if (strcmp(oprd->name, input_name) == 0) {
|
if (strcmp(oprd->name, task->input_name) == 0) {
|
||||||
if (oprd->type != DOT_INPUT) {
|
if (oprd->type != DOT_INPUT) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name);
|
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", task->input_name);
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
oprd = NULL;
|
oprd = NULL;
|
||||||
}
|
}
|
||||||
if (!oprd) {
|
if (!oprd) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
|
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
|
|
||||||
oprd->dims[1] = in_frame->height;
|
oprd->dims[1] = task->in_frame->height;
|
||||||
oprd->dims[2] = in_frame->width;
|
oprd->dims[2] = task->in_frame->width;
|
||||||
|
|
||||||
av_freep(&oprd->data);
|
av_freep(&oprd->data);
|
||||||
oprd->length = ff_calculate_operand_data_length(oprd);
|
oprd->length = ff_calculate_operand_data_length(oprd);
|
||||||
if (oprd->length <= 0) {
|
if (oprd->length <= 0) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n");
|
av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n");
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
oprd->data = av_malloc(oprd->length);
|
oprd->data = av_malloc(oprd->length);
|
||||||
if (!oprd->data) {
|
if (!oprd->data) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n");
|
av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n");
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
|
|
||||||
input.height = oprd->dims[1];
|
input.height = oprd->dims[1];
|
||||||
@ -310,19 +353,20 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp
|
|||||||
input.channels = oprd->dims[3];
|
input.channels = oprd->dims[3];
|
||||||
input.data = oprd->data;
|
input.data = oprd->data;
|
||||||
input.dt = oprd->data_type;
|
input.dt = oprd->data_type;
|
||||||
if (do_ioproc) {
|
if (task->do_ioproc) {
|
||||||
if (native_model->model->frame_pre_proc != NULL) {
|
if (native_model->model->frame_pre_proc != NULL) {
|
||||||
native_model->model->frame_pre_proc(in_frame, &input, native_model->model->filter_ctx);
|
native_model->model->frame_pre_proc(task->in_frame, &input, native_model->model->filter_ctx);
|
||||||
} else {
|
} else {
|
||||||
ff_proc_from_frame_to_dnn(in_frame, &input, ctx);
|
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (nb_output != 1) {
|
if (task->nb_output != 1) {
|
||||||
// currently, the filter does not need multiple outputs,
|
// currently, the filter does not need multiple outputs,
|
||||||
// so we just pending the support until we really need it.
|
// so we just pending the support until we really need it.
|
||||||
avpriv_report_missing_feature(ctx, "multiple outputs");
|
avpriv_report_missing_feature(ctx, "multiple outputs");
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (layer = 0; layer < native_model->layers_num; ++layer){
|
for (layer = 0; layer < native_model->layers_num; ++layer){
|
||||||
@ -333,13 +377,14 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp
|
|||||||
native_model->layers[layer].params,
|
native_model->layers[layer].params,
|
||||||
&native_model->ctx) == DNN_ERROR) {
|
&native_model->ctx) == DNN_ERROR) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n");
|
av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n");
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (uint32_t i = 0; i < nb_output; ++i) {
|
for (uint32_t i = 0; i < task->nb_output; ++i) {
|
||||||
DnnOperand *oprd = NULL;
|
DnnOperand *oprd = NULL;
|
||||||
const char *output_name = output_names[i];
|
const char *output_name = task->output_names[i];
|
||||||
for (int j = 0; j < native_model->operands_num; ++j) {
|
for (int j = 0; j < native_model->operands_num; ++j) {
|
||||||
if (strcmp(native_model->operands[j].name, output_name) == 0) {
|
if (strcmp(native_model->operands[j].name, output_name) == 0) {
|
||||||
oprd = &native_model->operands[j];
|
oprd = &native_model->operands[j];
|
||||||
@ -349,7 +394,8 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp
|
|||||||
|
|
||||||
if (oprd == NULL) {
|
if (oprd == NULL) {
|
||||||
av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n");
|
av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n");
|
||||||
return DNN_ERROR;
|
ret = DNN_ERROR;
|
||||||
|
goto err;
|
||||||
}
|
}
|
||||||
|
|
||||||
output.data = oprd->data;
|
output.data = oprd->data;
|
||||||
@ -358,32 +404,43 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp
|
|||||||
output.channels = oprd->dims[3];
|
output.channels = oprd->dims[3];
|
||||||
output.dt = oprd->data_type;
|
output.dt = oprd->data_type;
|
||||||
|
|
||||||
if (do_ioproc) {
|
if (task->do_ioproc) {
|
||||||
if (native_model->model->frame_post_proc != NULL) {
|
if (native_model->model->frame_post_proc != NULL) {
|
||||||
native_model->model->frame_post_proc(out_frame, &output, native_model->model->filter_ctx);
|
native_model->model->frame_post_proc(task->out_frame, &output, native_model->model->filter_ctx);
|
||||||
} else {
|
} else {
|
||||||
ff_proc_from_dnn_to_frame(out_frame, &output, ctx);
|
ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
out_frame->width = output.width;
|
task->out_frame->width = output.width;
|
||||||
out_frame->height = output.height;
|
task->out_frame->height = output.height;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
task->inference_done++;
|
||||||
return DNN_SUCCESS;
|
err:
|
||||||
|
av_freep(&inference);
|
||||||
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params)
|
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params)
|
||||||
{
|
{
|
||||||
NativeModel *native_model = model->model;
|
NativeModel *native_model = model->model;
|
||||||
NativeContext *ctx = &native_model->ctx;
|
NativeContext *ctx = &native_model->ctx;
|
||||||
|
TaskItem task;
|
||||||
|
|
||||||
if (ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params) != 0) {
|
if (ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params) != 0) {
|
||||||
return DNN_ERROR;
|
return DNN_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
return execute_model_native(model, exec_params->input_name, exec_params->in_frame,
|
if (ff_dnn_fill_task(&task, exec_params, native_model, 0, 1) != DNN_SUCCESS) {
|
||||||
exec_params->output_names, exec_params->nb_output, exec_params->out_frame, 1);
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (extract_inference_from_task(&task, native_model->inference_queue) != DNN_SUCCESS) {
|
||||||
|
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
|
||||||
|
return DNN_ERROR;
|
||||||
|
}
|
||||||
|
|
||||||
|
return execute_model_native(native_model->inference_queue);
|
||||||
}
|
}
|
||||||
|
|
||||||
int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd)
|
int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd)
|
||||||
@ -435,6 +492,11 @@ void ff_dnn_free_model_native(DNNModel **model)
|
|||||||
av_freep(&native_model->operands);
|
av_freep(&native_model->operands);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
while (ff_queue_size(native_model->inference_queue) != 0) {
|
||||||
|
InferenceItem *item = ff_queue_pop_front(native_model->inference_queue);
|
||||||
|
av_freep(&item);
|
||||||
|
}
|
||||||
|
ff_queue_destroy(native_model->inference_queue);
|
||||||
av_freep(&native_model);
|
av_freep(&native_model);
|
||||||
}
|
}
|
||||||
av_freep(model);
|
av_freep(model);
|
||||||
|
@ -30,6 +30,7 @@
|
|||||||
#include "../dnn_interface.h"
|
#include "../dnn_interface.h"
|
||||||
#include "libavformat/avio.h"
|
#include "libavformat/avio.h"
|
||||||
#include "libavutil/opt.h"
|
#include "libavutil/opt.h"
|
||||||
|
#include "queue.h"
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* the enum value of DNNLayerType should not be changed,
|
* the enum value of DNNLayerType should not be changed,
|
||||||
@ -126,6 +127,7 @@ typedef struct NativeModel{
|
|||||||
int32_t layers_num;
|
int32_t layers_num;
|
||||||
DnnOperand *operands;
|
DnnOperand *operands;
|
||||||
int32_t operands_num;
|
int32_t operands_num;
|
||||||
|
Queue *inference_queue;
|
||||||
} NativeModel;
|
} NativeModel;
|
||||||
|
|
||||||
DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
|
DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user