mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-08 13:22:53 +02:00
cosmetics: rename all AC3DecodeContext variables from ctx to s
Originally committed as revision 11355 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
parent
23c8cb89c9
commit
d802d7ca12
@ -291,24 +291,24 @@ static void ac3_tables_init(void)
|
||||
*/
|
||||
static int ac3_decode_init(AVCodecContext *avctx)
|
||||
{
|
||||
AC3DecodeContext *ctx = avctx->priv_data;
|
||||
ctx->avctx = avctx;
|
||||
AC3DecodeContext *s = avctx->priv_data;
|
||||
s->avctx = avctx;
|
||||
|
||||
ac3_common_init();
|
||||
ac3_tables_init();
|
||||
ff_mdct_init(&ctx->imdct_256, 8, 1);
|
||||
ff_mdct_init(&ctx->imdct_512, 9, 1);
|
||||
ac3_window_init(ctx->window);
|
||||
dsputil_init(&ctx->dsp, avctx);
|
||||
av_init_random(0, &ctx->dith_state);
|
||||
ff_mdct_init(&s->imdct_256, 8, 1);
|
||||
ff_mdct_init(&s->imdct_512, 9, 1);
|
||||
ac3_window_init(s->window);
|
||||
dsputil_init(&s->dsp, avctx);
|
||||
av_init_random(0, &s->dith_state);
|
||||
|
||||
/* set bias values for float to int16 conversion */
|
||||
if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
|
||||
ctx->add_bias = 385.0f;
|
||||
ctx->mul_bias = 1.0f;
|
||||
if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
|
||||
s->add_bias = 385.0f;
|
||||
s->mul_bias = 1.0f;
|
||||
} else {
|
||||
ctx->add_bias = 0.0f;
|
||||
ctx->mul_bias = 32767.0f;
|
||||
s->add_bias = 0.0f;
|
||||
s->mul_bias = 32767.0f;
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -319,10 +319,10 @@ static int ac3_decode_init(AVCodecContext *avctx)
|
||||
* GetBitContext within AC3DecodeContext must point to
|
||||
* start of the synchronized ac3 bitstream.
|
||||
*/
|
||||
static int ac3_parse_header(AC3DecodeContext *ctx)
|
||||
static int ac3_parse_header(AC3DecodeContext *s)
|
||||
{
|
||||
AC3HeaderInfo hdr;
|
||||
GetBitContext *gbc = &ctx->gbc;
|
||||
GetBitContext *gbc = &s->gbc;
|
||||
float center_mix_level, surround_mix_level;
|
||||
int err, i;
|
||||
|
||||
@ -331,42 +331,42 @@ static int ac3_parse_header(AC3DecodeContext *ctx)
|
||||
return err;
|
||||
|
||||
/* get decoding parameters from header info */
|
||||
ctx->bit_alloc_params.sr_code = hdr.sr_code;
|
||||
ctx->channel_mode = hdr.channel_mode;
|
||||
s->bit_alloc_params.sr_code = hdr.sr_code;
|
||||
s->channel_mode = hdr.channel_mode;
|
||||
center_mix_level = gain_levels[center_levels[hdr.center_mix_level]];
|
||||
surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]];
|
||||
ctx->lfe_on = hdr.lfe_on;
|
||||
ctx->bit_alloc_params.sr_shift = hdr.sr_shift;
|
||||
ctx->sampling_rate = hdr.sample_rate;
|
||||
ctx->bit_rate = hdr.bit_rate;
|
||||
ctx->channels = hdr.channels;
|
||||
ctx->fbw_channels = ctx->channels - ctx->lfe_on;
|
||||
ctx->lfe_ch = ctx->fbw_channels + 1;
|
||||
ctx->frame_size = hdr.frame_size;
|
||||
s->lfe_on = hdr.lfe_on;
|
||||
s->bit_alloc_params.sr_shift = hdr.sr_shift;
|
||||
s->sampling_rate = hdr.sample_rate;
|
||||
s->bit_rate = hdr.bit_rate;
|
||||
s->channels = hdr.channels;
|
||||
s->fbw_channels = s->channels - s->lfe_on;
|
||||
s->lfe_ch = s->fbw_channels + 1;
|
||||
s->frame_size = hdr.frame_size;
|
||||
|
||||
/* set default output to all source channels */
|
||||
ctx->out_channels = ctx->channels;
|
||||
ctx->output_mode = ctx->channel_mode;
|
||||
if(ctx->lfe_on)
|
||||
ctx->output_mode |= AC3_OUTPUT_LFEON;
|
||||
s->out_channels = s->channels;
|
||||
s->output_mode = s->channel_mode;
|
||||
if(s->lfe_on)
|
||||
s->output_mode |= AC3_OUTPUT_LFEON;
|
||||
|
||||
/* skip over portion of header which has already been read */
|
||||
skip_bits(gbc, 16); // skip the sync_word
|
||||
skip_bits(gbc, 16); // skip crc1
|
||||
skip_bits(gbc, 8); // skip fscod and frmsizecod
|
||||
skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
|
||||
if(ctx->channel_mode == AC3_CHMODE_STEREO) {
|
||||
if(s->channel_mode == AC3_CHMODE_STEREO) {
|
||||
skip_bits(gbc, 2); // skip dsurmod
|
||||
} else {
|
||||
if((ctx->channel_mode & 1) && ctx->channel_mode != AC3_CHMODE_MONO)
|
||||
if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
|
||||
skip_bits(gbc, 2); // skip cmixlev
|
||||
if(ctx->channel_mode & 4)
|
||||
if(s->channel_mode & 4)
|
||||
skip_bits(gbc, 2); // skip surmixlev
|
||||
}
|
||||
skip_bits1(gbc); // skip lfeon
|
||||
|
||||
/* read the rest of the bsi. read twice for dual mono mode. */
|
||||
i = !(ctx->channel_mode);
|
||||
i = !(s->channel_mode);
|
||||
do {
|
||||
skip_bits(gbc, 5); // skip dialog normalization
|
||||
if (get_bits1(gbc))
|
||||
@ -396,20 +396,20 @@ static int ac3_parse_header(AC3DecodeContext *ctx)
|
||||
|
||||
/* set stereo downmixing coefficients
|
||||
reference: Section 7.8.2 Downmixing Into Two Channels */
|
||||
for(i=0; i<ctx->fbw_channels; i++) {
|
||||
ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][0]];
|
||||
ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][1]];
|
||||
for(i=0; i<s->fbw_channels; i++) {
|
||||
s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
|
||||
s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
|
||||
}
|
||||
if(ctx->channel_mode > 1 && ctx->channel_mode & 1) {
|
||||
ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = center_mix_level;
|
||||
if(s->channel_mode > 1 && s->channel_mode & 1) {
|
||||
s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = center_mix_level;
|
||||
}
|
||||
if(ctx->channel_mode == AC3_CHMODE_2F1R || ctx->channel_mode == AC3_CHMODE_3F1R) {
|
||||
int nf = ctx->channel_mode - 2;
|
||||
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB;
|
||||
if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
|
||||
int nf = s->channel_mode - 2;
|
||||
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB;
|
||||
}
|
||||
if(ctx->channel_mode == AC3_CHMODE_2F2R || ctx->channel_mode == AC3_CHMODE_3F2R) {
|
||||
int nf = ctx->channel_mode - 4;
|
||||
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surround_mix_level;
|
||||
if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
|
||||
int nf = s->channel_mode - 4;
|
||||
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = surround_mix_level;
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -450,23 +450,23 @@ static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
|
||||
* range using the coupling coefficients and coupling coordinates.
|
||||
* reference: Section 7.4.3 Coupling Coordinate Format
|
||||
*/
|
||||
static void uncouple_channels(AC3DecodeContext *ctx)
|
||||
static void uncouple_channels(AC3DecodeContext *s)
|
||||
{
|
||||
int i, j, ch, bnd, subbnd;
|
||||
|
||||
subbnd = -1;
|
||||
i = ctx->start_freq[CPL_CH];
|
||||
for(bnd=0; bnd<ctx->num_cpl_bands; bnd++) {
|
||||
i = s->start_freq[CPL_CH];
|
||||
for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
|
||||
do {
|
||||
subbnd++;
|
||||
for(j=0; j<12; j++) {
|
||||
for(ch=1; ch<=ctx->fbw_channels; ch++) {
|
||||
if(ctx->channel_in_cpl[ch])
|
||||
ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cpl_coords[ch][bnd] * 8.0f;
|
||||
for(ch=1; ch<=s->fbw_channels; ch++) {
|
||||
if(s->channel_in_cpl[ch])
|
||||
s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
} while(ctx->cpl_band_struct[subbnd]);
|
||||
} while(s->cpl_band_struct[subbnd]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -486,25 +486,25 @@ typedef struct {
|
||||
* Get the transform coefficients for a particular channel
|
||||
* reference: Section 7.3 Quantization and Decoding of Mantissas
|
||||
*/
|
||||
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
|
||||
static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
|
||||
{
|
||||
GetBitContext *gbc = &ctx->gbc;
|
||||
GetBitContext *gbc = &s->gbc;
|
||||
int i, gcode, tbap, start, end;
|
||||
uint8_t *exps;
|
||||
uint8_t *bap;
|
||||
float *coeffs;
|
||||
|
||||
exps = ctx->dexps[ch_index];
|
||||
bap = ctx->bap[ch_index];
|
||||
coeffs = ctx->transform_coeffs[ch_index];
|
||||
start = ctx->start_freq[ch_index];
|
||||
end = ctx->end_freq[ch_index];
|
||||
exps = s->dexps[ch_index];
|
||||
bap = s->bap[ch_index];
|
||||
coeffs = s->transform_coeffs[ch_index];
|
||||
start = s->start_freq[ch_index];
|
||||
end = s->end_freq[ch_index];
|
||||
|
||||
for (i = start; i < end; i++) {
|
||||
tbap = bap[i];
|
||||
switch (tbap) {
|
||||
case 0:
|
||||
coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
|
||||
coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
|
||||
break;
|
||||
|
||||
case 1:
|
||||
@ -562,27 +562,27 @@ static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_gro
|
||||
* Remove random dithering from coefficients with zero-bit mantissas
|
||||
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
|
||||
*/
|
||||
static void remove_dithering(AC3DecodeContext *ctx) {
|
||||
static void remove_dithering(AC3DecodeContext *s) {
|
||||
int ch, i;
|
||||
int end=0;
|
||||
float *coeffs;
|
||||
uint8_t *bap;
|
||||
|
||||
for(ch=1; ch<=ctx->fbw_channels; ch++) {
|
||||
if(!ctx->dither_flag[ch]) {
|
||||
coeffs = ctx->transform_coeffs[ch];
|
||||
bap = ctx->bap[ch];
|
||||
if(ctx->channel_in_cpl[ch])
|
||||
end = ctx->start_freq[CPL_CH];
|
||||
for(ch=1; ch<=s->fbw_channels; ch++) {
|
||||
if(!s->dither_flag[ch]) {
|
||||
coeffs = s->transform_coeffs[ch];
|
||||
bap = s->bap[ch];
|
||||
if(s->channel_in_cpl[ch])
|
||||
end = s->start_freq[CPL_CH];
|
||||
else
|
||||
end = ctx->end_freq[ch];
|
||||
end = s->end_freq[ch];
|
||||
for(i=0; i<end; i++) {
|
||||
if(bap[i] == 0)
|
||||
coeffs[i] = 0.0f;
|
||||
}
|
||||
if(ctx->channel_in_cpl[ch]) {
|
||||
bap = ctx->bap[CPL_CH];
|
||||
for(; i<ctx->end_freq[CPL_CH]; i++) {
|
||||
if(s->channel_in_cpl[ch]) {
|
||||
bap = s->bap[CPL_CH];
|
||||
for(; i<s->end_freq[CPL_CH]; i++) {
|
||||
if(bap[i] == 0)
|
||||
coeffs[i] = 0.0f;
|
||||
}
|
||||
@ -594,7 +594,7 @@ static void remove_dithering(AC3DecodeContext *ctx) {
|
||||
/**
|
||||
* Get the transform coefficients.
|
||||
*/
|
||||
static int get_transform_coeffs(AC3DecodeContext * ctx)
|
||||
static int get_transform_coeffs(AC3DecodeContext *s)
|
||||
{
|
||||
int ch, end;
|
||||
int got_cplchan = 0;
|
||||
@ -602,33 +602,33 @@ static int get_transform_coeffs(AC3DecodeContext * ctx)
|
||||
|
||||
m.b1ptr = m.b2ptr = m.b4ptr = 3;
|
||||
|
||||
for (ch = 1; ch <= ctx->channels; ch++) {
|
||||
for (ch = 1; ch <= s->channels; ch++) {
|
||||
/* transform coefficients for full-bandwidth channel */
|
||||
if (get_transform_coeffs_ch(ctx, ch, &m))
|
||||
if (get_transform_coeffs_ch(s, ch, &m))
|
||||
return -1;
|
||||
/* tranform coefficients for coupling channel come right after the
|
||||
coefficients for the first coupled channel*/
|
||||
if (ctx->channel_in_cpl[ch]) {
|
||||
if (s->channel_in_cpl[ch]) {
|
||||
if (!got_cplchan) {
|
||||
if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
|
||||
av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
|
||||
if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
|
||||
av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
|
||||
return -1;
|
||||
}
|
||||
uncouple_channels(ctx);
|
||||
uncouple_channels(s);
|
||||
got_cplchan = 1;
|
||||
}
|
||||
end = ctx->end_freq[CPL_CH];
|
||||
end = s->end_freq[CPL_CH];
|
||||
} else {
|
||||
end = ctx->end_freq[ch];
|
||||
end = s->end_freq[ch];
|
||||
}
|
||||
do
|
||||
ctx->transform_coeffs[ch][end] = 0;
|
||||
s->transform_coeffs[ch][end] = 0;
|
||||
while(++end < 256);
|
||||
}
|
||||
|
||||
/* if any channel doesn't use dithering, zero appropriate coefficients */
|
||||
if(!ctx->dither_all)
|
||||
remove_dithering(ctx);
|
||||
if(!s->dither_all)
|
||||
remove_dithering(s);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -637,22 +637,22 @@ static int get_transform_coeffs(AC3DecodeContext * ctx)
|
||||
* Stereo rematrixing.
|
||||
* reference: Section 7.5.4 Rematrixing : Decoding Technique
|
||||
*/
|
||||
static void do_rematrixing(AC3DecodeContext *ctx)
|
||||
static void do_rematrixing(AC3DecodeContext *s)
|
||||
{
|
||||
int bnd, i;
|
||||
int end, bndend;
|
||||
float tmp0, tmp1;
|
||||
|
||||
end = FFMIN(ctx->end_freq[1], ctx->end_freq[2]);
|
||||
end = FFMIN(s->end_freq[1], s->end_freq[2]);
|
||||
|
||||
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) {
|
||||
if(ctx->rematrixing_flags[bnd]) {
|
||||
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
|
||||
if(s->rematrixing_flags[bnd]) {
|
||||
bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
|
||||
for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
|
||||
tmp0 = ctx->transform_coeffs[1][i];
|
||||
tmp1 = ctx->transform_coeffs[2][i];
|
||||
ctx->transform_coeffs[1][i] = tmp0 + tmp1;
|
||||
ctx->transform_coeffs[2][i] = tmp0 - tmp1;
|
||||
tmp0 = s->transform_coeffs[1][i];
|
||||
tmp1 = s->transform_coeffs[2][i];
|
||||
s->transform_coeffs[1][i] = tmp0 + tmp1;
|
||||
s->transform_coeffs[2][i] = tmp0 - tmp1;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -661,21 +661,21 @@ static void do_rematrixing(AC3DecodeContext *ctx)
|
||||
/**
|
||||
* Perform the 256-point IMDCT
|
||||
*/
|
||||
static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
|
||||
static void do_imdct_256(AC3DecodeContext *s, int chindex)
|
||||
{
|
||||
int i, k;
|
||||
DECLARE_ALIGNED_16(float, x[128]);
|
||||
FFTComplex z[2][64];
|
||||
float *o_ptr = ctx->tmp_output;
|
||||
float *o_ptr = s->tmp_output;
|
||||
|
||||
for(i=0; i<2; i++) {
|
||||
/* de-interleave coefficients */
|
||||
for(k=0; k<128; k++) {
|
||||
x[k] = ctx->transform_coeffs[chindex][2*k+i];
|
||||
x[k] = s->transform_coeffs[chindex][2*k+i];
|
||||
}
|
||||
|
||||
/* run standard IMDCT */
|
||||
ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
|
||||
s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
|
||||
|
||||
/* reverse the post-rotation & reordering from standard IMDCT */
|
||||
for(k=0; k<32; k++) {
|
||||
@ -704,32 +704,32 @@ static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
|
||||
* Convert frequency domain coefficients to time-domain audio samples.
|
||||
* reference: Section 7.9.4 Transformation Equations
|
||||
*/
|
||||
static inline void do_imdct(AC3DecodeContext *ctx)
|
||||
static inline void do_imdct(AC3DecodeContext *s)
|
||||
{
|
||||
int ch;
|
||||
int channels;
|
||||
|
||||
/* Don't perform the IMDCT on the LFE channel unless it's used in the output */
|
||||
channels = ctx->fbw_channels;
|
||||
if(ctx->output_mode & AC3_OUTPUT_LFEON)
|
||||
channels = s->fbw_channels;
|
||||
if(s->output_mode & AC3_OUTPUT_LFEON)
|
||||
channels++;
|
||||
|
||||
for (ch=1; ch<=channels; ch++) {
|
||||
if (ctx->block_switch[ch]) {
|
||||
do_imdct_256(ctx, ch);
|
||||
if (s->block_switch[ch]) {
|
||||
do_imdct_256(s, ch);
|
||||
} else {
|
||||
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
|
||||
ctx->transform_coeffs[ch],
|
||||
ctx->tmp_imdct);
|
||||
s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
|
||||
s->transform_coeffs[ch],
|
||||
s->tmp_imdct);
|
||||
}
|
||||
/* For the first half of the block, apply the window, add the delay
|
||||
from the previous block, and send to output */
|
||||
ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
|
||||
ctx->window, ctx->delay[ch-1], 0, 256, 1);
|
||||
s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
|
||||
s->window, s->delay[ch-1], 0, 256, 1);
|
||||
/* For the second half of the block, apply the window and store the
|
||||
samples to delay, to be combined with the next block */
|
||||
ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
|
||||
ctx->window, 256);
|
||||
s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
|
||||
s->window, 256);
|
||||
}
|
||||
}
|
||||
|
||||
@ -764,182 +764,182 @@ static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int fbw_channels,
|
||||
/**
|
||||
* Parse an audio block from AC-3 bitstream.
|
||||
*/
|
||||
static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
|
||||
static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
|
||||
{
|
||||
int fbw_channels = ctx->fbw_channels;
|
||||
int channel_mode = ctx->channel_mode;
|
||||
int fbw_channels = s->fbw_channels;
|
||||
int channel_mode = s->channel_mode;
|
||||
int i, bnd, seg, ch;
|
||||
GetBitContext *gbc = &ctx->gbc;
|
||||
GetBitContext *gbc = &s->gbc;
|
||||
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
|
||||
|
||||
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
|
||||
|
||||
/* block switch flags */
|
||||
for (ch = 1; ch <= fbw_channels; ch++)
|
||||
ctx->block_switch[ch] = get_bits1(gbc);
|
||||
s->block_switch[ch] = get_bits1(gbc);
|
||||
|
||||
/* dithering flags */
|
||||
ctx->dither_all = 1;
|
||||
s->dither_all = 1;
|
||||
for (ch = 1; ch <= fbw_channels; ch++) {
|
||||
ctx->dither_flag[ch] = get_bits1(gbc);
|
||||
if(!ctx->dither_flag[ch])
|
||||
ctx->dither_all = 0;
|
||||
s->dither_flag[ch] = get_bits1(gbc);
|
||||
if(!s->dither_flag[ch])
|
||||
s->dither_all = 0;
|
||||
}
|
||||
|
||||
/* dynamic range */
|
||||
i = !(ctx->channel_mode);
|
||||
i = !(s->channel_mode);
|
||||
do {
|
||||
if(get_bits1(gbc)) {
|
||||
ctx->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
|
||||
ctx->avctx->drc_scale)+1.0;
|
||||
s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
|
||||
s->avctx->drc_scale)+1.0;
|
||||
} else if(blk == 0) {
|
||||
ctx->dynamic_range[i] = 1.0f;
|
||||
s->dynamic_range[i] = 1.0f;
|
||||
}
|
||||
} while(i--);
|
||||
|
||||
/* coupling strategy */
|
||||
if (get_bits1(gbc)) {
|
||||
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
||||
ctx->cpl_in_use = get_bits1(gbc);
|
||||
if (ctx->cpl_in_use) {
|
||||
s->cpl_in_use = get_bits1(gbc);
|
||||
if (s->cpl_in_use) {
|
||||
/* coupling in use */
|
||||
int cpl_begin_freq, cpl_end_freq;
|
||||
|
||||
/* determine which channels are coupled */
|
||||
for (ch = 1; ch <= fbw_channels; ch++)
|
||||
ctx->channel_in_cpl[ch] = get_bits1(gbc);
|
||||
s->channel_in_cpl[ch] = get_bits1(gbc);
|
||||
|
||||
/* phase flags in use */
|
||||
if (channel_mode == AC3_CHMODE_STEREO)
|
||||
ctx->phase_flags_in_use = get_bits1(gbc);
|
||||
s->phase_flags_in_use = get_bits1(gbc);
|
||||
|
||||
/* coupling frequency range and band structure */
|
||||
cpl_begin_freq = get_bits(gbc, 4);
|
||||
cpl_end_freq = get_bits(gbc, 4);
|
||||
if (3 + cpl_end_freq - cpl_begin_freq < 0) {
|
||||
av_log(ctx->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
|
||||
av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
|
||||
return -1;
|
||||
}
|
||||
ctx->num_cpl_bands = ctx->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
|
||||
ctx->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
|
||||
ctx->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
|
||||
for (bnd = 0; bnd < ctx->num_cpl_subbands - 1; bnd++) {
|
||||
s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
|
||||
s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
|
||||
s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
|
||||
for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
|
||||
if (get_bits1(gbc)) {
|
||||
ctx->cpl_band_struct[bnd] = 1;
|
||||
ctx->num_cpl_bands--;
|
||||
s->cpl_band_struct[bnd] = 1;
|
||||
s->num_cpl_bands--;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* coupling not in use */
|
||||
for (ch = 1; ch <= fbw_channels; ch++)
|
||||
ctx->channel_in_cpl[ch] = 0;
|
||||
s->channel_in_cpl[ch] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* coupling coordinates */
|
||||
if (ctx->cpl_in_use) {
|
||||
if (s->cpl_in_use) {
|
||||
int cpl_coords_exist = 0;
|
||||
|
||||
for (ch = 1; ch <= fbw_channels; ch++) {
|
||||
if (ctx->channel_in_cpl[ch]) {
|
||||
if (s->channel_in_cpl[ch]) {
|
||||
if (get_bits1(gbc)) {
|
||||
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
|
||||
cpl_coords_exist = 1;
|
||||
master_cpl_coord = 3 * get_bits(gbc, 2);
|
||||
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) {
|
||||
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
|
||||
cpl_coord_exp = get_bits(gbc, 4);
|
||||
cpl_coord_mant = get_bits(gbc, 4);
|
||||
if (cpl_coord_exp == 15)
|
||||
ctx->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
|
||||
s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
|
||||
else
|
||||
ctx->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
|
||||
ctx->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
|
||||
s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
|
||||
s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* phase flags */
|
||||
if (channel_mode == AC3_CHMODE_STEREO && ctx->phase_flags_in_use && cpl_coords_exist) {
|
||||
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) {
|
||||
if (channel_mode == AC3_CHMODE_STEREO && s->phase_flags_in_use && cpl_coords_exist) {
|
||||
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
|
||||
if (get_bits1(gbc))
|
||||
ctx->cpl_coords[2][bnd] = -ctx->cpl_coords[2][bnd];
|
||||
s->cpl_coords[2][bnd] = -s->cpl_coords[2][bnd];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* stereo rematrixing strategy and band structure */
|
||||
if (channel_mode == AC3_CHMODE_STEREO) {
|
||||
ctx->rematrixing_strategy = get_bits1(gbc);
|
||||
if (ctx->rematrixing_strategy) {
|
||||
ctx->num_rematrixing_bands = 4;
|
||||
if(ctx->cpl_in_use && ctx->start_freq[CPL_CH] <= 61)
|
||||
ctx->num_rematrixing_bands -= 1 + (ctx->start_freq[CPL_CH] == 37);
|
||||
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++)
|
||||
ctx->rematrixing_flags[bnd] = get_bits1(gbc);
|
||||
s->rematrixing_strategy = get_bits1(gbc);
|
||||
if (s->rematrixing_strategy) {
|
||||
s->num_rematrixing_bands = 4;
|
||||
if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
|
||||
s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
|
||||
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
|
||||
s->rematrixing_flags[bnd] = get_bits1(gbc);
|
||||
}
|
||||
}
|
||||
|
||||
/* exponent strategies for each channel */
|
||||
ctx->exp_strategy[CPL_CH] = EXP_REUSE;
|
||||
ctx->exp_strategy[ctx->lfe_ch] = EXP_REUSE;
|
||||
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) {
|
||||
if(ch == ctx->lfe_ch)
|
||||
ctx->exp_strategy[ch] = get_bits(gbc, 1);
|
||||
s->exp_strategy[CPL_CH] = EXP_REUSE;
|
||||
s->exp_strategy[s->lfe_ch] = EXP_REUSE;
|
||||
for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
|
||||
if(ch == s->lfe_ch)
|
||||
s->exp_strategy[ch] = get_bits(gbc, 1);
|
||||
else
|
||||
ctx->exp_strategy[ch] = get_bits(gbc, 2);
|
||||
if(ctx->exp_strategy[ch] != EXP_REUSE)
|
||||
s->exp_strategy[ch] = get_bits(gbc, 2);
|
||||
if(s->exp_strategy[ch] != EXP_REUSE)
|
||||
bit_alloc_stages[ch] = 3;
|
||||
}
|
||||
|
||||
/* channel bandwidth */
|
||||
for (ch = 1; ch <= fbw_channels; ch++) {
|
||||
ctx->start_freq[ch] = 0;
|
||||
if (ctx->exp_strategy[ch] != EXP_REUSE) {
|
||||
int prev = ctx->end_freq[ch];
|
||||
if (ctx->channel_in_cpl[ch])
|
||||
ctx->end_freq[ch] = ctx->start_freq[CPL_CH];
|
||||
s->start_freq[ch] = 0;
|
||||
if (s->exp_strategy[ch] != EXP_REUSE) {
|
||||
int prev = s->end_freq[ch];
|
||||
if (s->channel_in_cpl[ch])
|
||||
s->end_freq[ch] = s->start_freq[CPL_CH];
|
||||
else {
|
||||
int bandwidth_code = get_bits(gbc, 6);
|
||||
if (bandwidth_code > 60) {
|
||||
av_log(ctx->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
|
||||
av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
|
||||
return -1;
|
||||
}
|
||||
ctx->end_freq[ch] = bandwidth_code * 3 + 73;
|
||||
s->end_freq[ch] = bandwidth_code * 3 + 73;
|
||||
}
|
||||
if(blk > 0 && ctx->end_freq[ch] != prev)
|
||||
if(blk > 0 && s->end_freq[ch] != prev)
|
||||
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
||||
}
|
||||
}
|
||||
ctx->start_freq[ctx->lfe_ch] = 0;
|
||||
ctx->end_freq[ctx->lfe_ch] = 7;
|
||||
s->start_freq[s->lfe_ch] = 0;
|
||||
s->end_freq[s->lfe_ch] = 7;
|
||||
|
||||
/* decode exponents for each channel */
|
||||
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) {
|
||||
if (ctx->exp_strategy[ch] != EXP_REUSE) {
|
||||
for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
|
||||
if (s->exp_strategy[ch] != EXP_REUSE) {
|
||||
int group_size, num_groups;
|
||||
group_size = 3 << (ctx->exp_strategy[ch] - 1);
|
||||
group_size = 3 << (s->exp_strategy[ch] - 1);
|
||||
if(ch == CPL_CH)
|
||||
num_groups = (ctx->end_freq[ch] - ctx->start_freq[ch]) / group_size;
|
||||
else if(ch == ctx->lfe_ch)
|
||||
num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
|
||||
else if(ch == s->lfe_ch)
|
||||
num_groups = 2;
|
||||
else
|
||||
num_groups = (ctx->end_freq[ch] + group_size - 4) / group_size;
|
||||
ctx->dexps[ch][0] = get_bits(gbc, 4) << !ch;
|
||||
decode_exponents(gbc, ctx->exp_strategy[ch], num_groups, ctx->dexps[ch][0],
|
||||
&ctx->dexps[ch][ctx->start_freq[ch]+!!ch]);
|
||||
if(ch != CPL_CH && ch != ctx->lfe_ch)
|
||||
num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
|
||||
s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
|
||||
decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
|
||||
&s->dexps[ch][s->start_freq[ch]+!!ch]);
|
||||
if(ch != CPL_CH && ch != s->lfe_ch)
|
||||
skip_bits(gbc, 2); /* skip gainrng */
|
||||
}
|
||||
}
|
||||
|
||||
/* bit allocation information */
|
||||
if (get_bits1(gbc)) {
|
||||
ctx->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift;
|
||||
ctx->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift;
|
||||
ctx->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
|
||||
ctx->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
|
||||
ctx->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
|
||||
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) {
|
||||
s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
||||
s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
||||
s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
|
||||
s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
|
||||
s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
|
||||
for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
|
||||
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
||||
}
|
||||
}
|
||||
@ -948,73 +948,73 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
|
||||
if (get_bits1(gbc)) {
|
||||
int csnr;
|
||||
csnr = (get_bits(gbc, 6) - 15) << 4;
|
||||
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { /* snr offset and fast gain */
|
||||
ctx->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
|
||||
ctx->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
||||
for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
|
||||
s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
|
||||
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
||||
}
|
||||
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
||||
}
|
||||
|
||||
/* coupling leak information */
|
||||
if (ctx->cpl_in_use && get_bits1(gbc)) {
|
||||
ctx->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
|
||||
ctx->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
|
||||
if (s->cpl_in_use && get_bits1(gbc)) {
|
||||
s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
|
||||
s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
|
||||
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
|
||||
}
|
||||
|
||||
/* delta bit allocation information */
|
||||
if (get_bits1(gbc)) {
|
||||
/* delta bit allocation exists (strategy) */
|
||||
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) {
|
||||
ctx->dba_mode[ch] = get_bits(gbc, 2);
|
||||
if (ctx->dba_mode[ch] == DBA_RESERVED) {
|
||||
av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
|
||||
for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
|
||||
s->dba_mode[ch] = get_bits(gbc, 2);
|
||||
if (s->dba_mode[ch] == DBA_RESERVED) {
|
||||
av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
|
||||
return -1;
|
||||
}
|
||||
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
||||
}
|
||||
/* channel delta offset, len and bit allocation */
|
||||
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) {
|
||||
if (ctx->dba_mode[ch] == DBA_NEW) {
|
||||
ctx->dba_nsegs[ch] = get_bits(gbc, 3);
|
||||
for (seg = 0; seg <= ctx->dba_nsegs[ch]; seg++) {
|
||||
ctx->dba_offsets[ch][seg] = get_bits(gbc, 5);
|
||||
ctx->dba_lengths[ch][seg] = get_bits(gbc, 4);
|
||||
ctx->dba_values[ch][seg] = get_bits(gbc, 3);
|
||||
for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
|
||||
if (s->dba_mode[ch] == DBA_NEW) {
|
||||
s->dba_nsegs[ch] = get_bits(gbc, 3);
|
||||
for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
|
||||
s->dba_offsets[ch][seg] = get_bits(gbc, 5);
|
||||
s->dba_lengths[ch][seg] = get_bits(gbc, 4);
|
||||
s->dba_values[ch][seg] = get_bits(gbc, 3);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if(blk == 0) {
|
||||
for(ch=0; ch<=ctx->channels; ch++) {
|
||||
ctx->dba_mode[ch] = DBA_NONE;
|
||||
for(ch=0; ch<=s->channels; ch++) {
|
||||
s->dba_mode[ch] = DBA_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Bit allocation */
|
||||
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) {
|
||||
for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
|
||||
if(bit_alloc_stages[ch] > 2) {
|
||||
/* Exponent mapping into PSD and PSD integration */
|
||||
ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
|
||||
ctx->start_freq[ch], ctx->end_freq[ch],
|
||||
ctx->psd[ch], ctx->band_psd[ch]);
|
||||
ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
|
||||
s->start_freq[ch], s->end_freq[ch],
|
||||
s->psd[ch], s->band_psd[ch]);
|
||||
}
|
||||
if(bit_alloc_stages[ch] > 1) {
|
||||
/* Compute excitation function, Compute masking curve, and
|
||||
Apply delta bit allocation */
|
||||
ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->band_psd[ch],
|
||||
ctx->start_freq[ch], ctx->end_freq[ch],
|
||||
ctx->fast_gain[ch], (ch == ctx->lfe_ch),
|
||||
ctx->dba_mode[ch], ctx->dba_nsegs[ch],
|
||||
ctx->dba_offsets[ch], ctx->dba_lengths[ch],
|
||||
ctx->dba_values[ch], ctx->mask[ch]);
|
||||
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
|
||||
s->start_freq[ch], s->end_freq[ch],
|
||||
s->fast_gain[ch], (ch == s->lfe_ch),
|
||||
s->dba_mode[ch], s->dba_nsegs[ch],
|
||||
s->dba_offsets[ch], s->dba_lengths[ch],
|
||||
s->dba_values[ch], s->mask[ch]);
|
||||
}
|
||||
if(bit_alloc_stages[ch] > 0) {
|
||||
/* Compute bit allocation */
|
||||
ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
|
||||
ctx->start_freq[ch], ctx->end_freq[ch],
|
||||
ctx->snr_offset[ch],
|
||||
ctx->bit_alloc_params.floor,
|
||||
ctx->bap[ch]);
|
||||
ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
|
||||
s->start_freq[ch], s->end_freq[ch],
|
||||
s->snr_offset[ch],
|
||||
s->bit_alloc_params.floor,
|
||||
s->bap[ch]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1027,43 +1027,43 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
|
||||
|
||||
/* unpack the transform coefficients
|
||||
this also uncouples channels if coupling is in use. */
|
||||
if (get_transform_coeffs(ctx)) {
|
||||
av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
|
||||
if (get_transform_coeffs(s)) {
|
||||
av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* recover coefficients if rematrixing is in use */
|
||||
if(ctx->channel_mode == AC3_CHMODE_STEREO)
|
||||
do_rematrixing(ctx);
|
||||
if(s->channel_mode == AC3_CHMODE_STEREO)
|
||||
do_rematrixing(s);
|
||||
|
||||
/* apply scaling to coefficients (headroom, dynrng) */
|
||||
for(ch=1; ch<=ctx->channels; ch++) {
|
||||
float gain = 2.0f * ctx->mul_bias;
|
||||
if(ctx->channel_mode == AC3_CHMODE_DUALMONO) {
|
||||
gain *= ctx->dynamic_range[ch-1];
|
||||
for(ch=1; ch<=s->channels; ch++) {
|
||||
float gain = 2.0f * s->mul_bias;
|
||||
if(s->channel_mode == AC3_CHMODE_DUALMONO) {
|
||||
gain *= s->dynamic_range[ch-1];
|
||||
} else {
|
||||
gain *= ctx->dynamic_range[0];
|
||||
gain *= s->dynamic_range[0];
|
||||
}
|
||||
for(i=0; i<ctx->end_freq[ch]; i++) {
|
||||
ctx->transform_coeffs[ch][i] *= gain;
|
||||
for(i=0; i<s->end_freq[ch]; i++) {
|
||||
s->transform_coeffs[ch][i] *= gain;
|
||||
}
|
||||
}
|
||||
|
||||
do_imdct(ctx);
|
||||
do_imdct(s);
|
||||
|
||||
/* downmix output if needed */
|
||||
if(ctx->channels != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
|
||||
ctx->fbw_channels == ctx->out_channels)) {
|
||||
ac3_downmix(ctx->output, ctx->fbw_channels, ctx->output_mode,
|
||||
ctx->downmix_coeffs);
|
||||
if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
|
||||
s->fbw_channels == s->out_channels)) {
|
||||
ac3_downmix(s->output, s->fbw_channels, s->output_mode,
|
||||
s->downmix_coeffs);
|
||||
}
|
||||
|
||||
/* convert float to 16-bit integer */
|
||||
for(ch=0; ch<ctx->out_channels; ch++) {
|
||||
for(ch=0; ch<s->out_channels; ch++) {
|
||||
for(i=0; i<256; i++) {
|
||||
ctx->output[ch][i] += ctx->add_bias;
|
||||
s->output[ch][i] += s->add_bias;
|
||||
}
|
||||
ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
|
||||
s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -1074,15 +1074,15 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
|
||||
*/
|
||||
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
|
||||
{
|
||||
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
|
||||
AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data;
|
||||
int16_t *out_samples = (int16_t *)data;
|
||||
int i, blk, ch, err;
|
||||
|
||||
/* initialize the GetBitContext with the start of valid AC-3 Frame */
|
||||
init_get_bits(&ctx->gbc, buf, buf_size * 8);
|
||||
init_get_bits(&s->gbc, buf, buf_size * 8);
|
||||
|
||||
/* parse the syncinfo */
|
||||
err = ac3_parse_header(ctx);
|
||||
err = ac3_parse_header(s);
|
||||
if(err) {
|
||||
switch(err) {
|
||||
case AC3_PARSE_ERROR_SYNC:
|
||||
@ -1104,37 +1104,37 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
|
||||
return -1;
|
||||
}
|
||||
|
||||
avctx->sample_rate = ctx->sampling_rate;
|
||||
avctx->bit_rate = ctx->bit_rate;
|
||||
avctx->sample_rate = s->sampling_rate;
|
||||
avctx->bit_rate = s->bit_rate;
|
||||
|
||||
/* check that reported frame size fits in input buffer */
|
||||
if(ctx->frame_size > buf_size) {
|
||||
if(s->frame_size > buf_size) {
|
||||
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* channel config */
|
||||
ctx->out_channels = ctx->channels;
|
||||
s->out_channels = s->channels;
|
||||
if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
|
||||
avctx->request_channels < ctx->channels) {
|
||||
ctx->out_channels = avctx->request_channels;
|
||||
ctx->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
||||
avctx->request_channels < s->channels) {
|
||||
s->out_channels = avctx->request_channels;
|
||||
s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
||||
}
|
||||
avctx->channels = ctx->out_channels;
|
||||
avctx->channels = s->out_channels;
|
||||
|
||||
/* parse the audio blocks */
|
||||
for (blk = 0; blk < NB_BLOCKS; blk++) {
|
||||
if (ac3_parse_audio_block(ctx, blk)) {
|
||||
if (ac3_parse_audio_block(s, blk)) {
|
||||
av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
|
||||
*data_size = 0;
|
||||
return ctx->frame_size;
|
||||
return s->frame_size;
|
||||
}
|
||||
for (i = 0; i < 256; i++)
|
||||
for (ch = 0; ch < ctx->out_channels; ch++)
|
||||
*(out_samples++) = ctx->int_output[ch][i];
|
||||
for (ch = 0; ch < s->out_channels; ch++)
|
||||
*(out_samples++) = s->int_output[ch][i];
|
||||
}
|
||||
*data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
|
||||
return ctx->frame_size;
|
||||
return s->frame_size;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1142,9 +1142,9 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
|
||||
*/
|
||||
static int ac3_decode_end(AVCodecContext *avctx)
|
||||
{
|
||||
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
|
||||
ff_mdct_end(&ctx->imdct_512);
|
||||
ff_mdct_end(&ctx->imdct_256);
|
||||
AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data;
|
||||
ff_mdct_end(&s->imdct_512);
|
||||
ff_mdct_end(&s->imdct_256);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user