1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00

libavcodec/flacenc: Implement encoding of 32 bit-per-sample PCM

Add encoding of 32 bit-per-sample PCM to FLAC files to libavcodec.
Coding to this format is at this point considered experimental and
-strict experimental is needed to get ffmpeg to encode such files.
This commit is contained in:
Martijn van Beurden 2022-10-11 19:24:36 +02:00 committed by Paul B Mahol
parent 909cfdc205
commit d8f1404c50
3 changed files with 380 additions and 123 deletions

View File

@ -31,7 +31,6 @@
#include "codec_internal.h" #include "codec_internal.h"
#include "encode.h" #include "encode.h"
#include "put_bits.h" #include "put_bits.h"
#include "put_golomb.h"
#include "lpc.h" #include "lpc.h"
#include "flac.h" #include "flac.h"
#include "flacdata.h" #include "flacdata.h"
@ -95,6 +94,7 @@ typedef struct FlacSubframe {
typedef struct FlacFrame { typedef struct FlacFrame {
FlacSubframe subframes[FLAC_MAX_CHANNELS]; FlacSubframe subframes[FLAC_MAX_CHANNELS];
int64_t samples_33bps[FLAC_MAX_BLOCKSIZE];
int blocksize; int blocksize;
int bs_code[2]; int bs_code[2];
uint8_t crc8; uint8_t crc8;
@ -282,10 +282,22 @@ static av_cold int flac_encode_init(AVCodecContext *avctx)
s->bps_code = 4; s->bps_code = 4;
break; break;
case AV_SAMPLE_FMT_S32: case AV_SAMPLE_FMT_S32:
if (avctx->bits_per_raw_sample != 24) if (avctx->bits_per_raw_sample <= 24) {
if (avctx->bits_per_raw_sample < 24)
av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n"); av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
avctx->bits_per_raw_sample = 24; avctx->bits_per_raw_sample = 24;
s->bps_code = 6; s->bps_code = 6;
} else if (avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
av_log(avctx, AV_LOG_WARNING,
"encoding as 24 bits-per-sample, more is considered "
"experimental. Add -strict experimental if you want "
"to encode more than 24 bits-per-sample\n");
avctx->bits_per_raw_sample = 24;
s->bps_code = 6;
} else {
avctx->bits_per_raw_sample = 32;
s->bps_code = 7;
}
break; break;
} }
@ -536,8 +548,7 @@ static uint64_t rice_count_exact(const int32_t *res, int n, int k)
uint64_t count = 0; uint64_t count = 0;
for (i = 0; i < n; i++) { for (i = 0; i < n; i++) {
int32_t v = -2 * res[i] - 1; unsigned v = ((unsigned)(res[i]) << 1) ^ (res[i] >> 31);
v ^= v >> 31;
count += (v >> k) + 1 + k; count += (v >> k) + 1 + k;
} }
return count; return count;
@ -716,8 +727,8 @@ static uint64_t calc_rice_params(RiceContext *rc,
tmp_rc.coding_mode = rc->coding_mode; tmp_rc.coding_mode = rc->coding_mode;
for (i = 0; i < n; i++) for (i = pred_order; i < n; i++)
udata[i] = (2 * data[i]) ^ (data[i] >> 31); udata[i] = ((unsigned)(data[i]) << 1) ^ (data[i] >> 31);
calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums); calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
@ -815,6 +826,130 @@ static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
} }
/* These four functions check for every residual whether it can be
* contained in <INT32_MIN,INT32_MAX]. In case it doesn't, the
* function that called this function has to try something else.
* Each function is duplicated, once for int32_t input, once for
* int64_t input */
#define ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT() \
{ \
for (int i = 0; i < order; i++) \
res[i] = smp[i]; \
if (order == 0) { \
for (int i = order; i < n; i++) { \
if (smp[i] == INT32_MIN) \
return 1; \
res[i] = smp[i]; \
} \
} else if (order == 1) { \
for (int i = order; i < n; i++) { \
int64_t res64 = (int64_t)smp[i] - smp[i-1]; \
if (res64 <= INT32_MIN || res64 > INT32_MAX) \
return 1; \
res[i] = res64; \
} \
} else if (order == 2) { \
for (int i = order; i < n; i++) { \
int64_t res64 = (int64_t)smp[i] - 2*(int64_t)smp[i-1] + smp[i-2]; \
if (res64 <= INT32_MIN || res64 > INT32_MAX) \
return 1; \
res[i] = res64; \
} \
} else if (order == 3) { \
for (int i = order; i < n; i++) { \
int64_t res64 = (int64_t)smp[i] - 3*(int64_t)smp[i-1] + 3*(int64_t)smp[i-2] - smp[i-3]; \
if (res64 <= INT32_MIN || res64 > INT32_MAX) \
return 1; \
res[i] = res64; \
} \
} else { \
for (int i = order; i < n; i++) { \
int64_t res64 = (int64_t)smp[i] - 4*(int64_t)smp[i-1] + 6*(int64_t)smp[i-2] - 4*(int64_t)smp[i-3] + smp[i-4]; \
if (res64 <= INT32_MIN || res64 > INT32_MAX) \
return 1; \
res[i] = res64; \
} \
} \
return 0; \
}
static int encode_residual_fixed_with_residual_limit(int32_t *res, const int32_t *smp,
int n, int order)
{
ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT();
}
static int encode_residual_fixed_with_residual_limit_33bps(int32_t *res, const int64_t *smp,
int n, int order)
{
ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT();
}
#define LPC_ENCODE_WITH_RESIDUAL_LIMIT() \
{ \
for (int i = 0; i < order; i++) \
res[i] = smp[i]; \
for (int i = order; i < len; i++) { \
int64_t p = 0, tmp; \
for (int j = 0; j < order; j++) \
p += (int64_t)coefs[j]*smp[(i-1)-j]; \
p >>= shift; \
tmp = smp[i] - p; \
if (tmp <= INT32_MIN || tmp > INT32_MAX) \
return 1; \
res[i] = tmp; \
} \
return 0; \
}
static int lpc_encode_with_residual_limit(int32_t *res, const int32_t *smp, int len,
int order, int32_t *coefs, int shift)
{
LPC_ENCODE_WITH_RESIDUAL_LIMIT();
}
static int lpc_encode_with_residual_limit_33bps(int32_t *res, const int64_t *smp, int len,
int order, int32_t *coefs, int shift)
{
LPC_ENCODE_WITH_RESIDUAL_LIMIT();
}
static int lpc_encode_choose_datapath(FlacEncodeContext *s, int32_t bps,
int32_t *res, const int32_t *smp,
const int64_t *smp_33bps, int len,
int order, int32_t *coefs, int shift)
{
uint64_t max_residual_value = 0;
int64_t max_sample_value = ((int64_t)(1) << (bps-1));
/* This calculates the max size of any residual with the current
* predictor, so we know whether we need to check the residual */
for (int i = 0; i < order; i++)
max_residual_value += FFABS(max_sample_value * coefs[i]);
max_residual_value >>= shift;
max_residual_value += max_sample_value;
if (bps > 32) {
if (lpc_encode_with_residual_limit_33bps(res, smp_33bps, len, order, coefs, shift))
return 1;
} else if (max_residual_value > INT32_MAX) {
if (lpc_encode_with_residual_limit(res, smp, len, order, coefs, shift))
return 1;
} else if (bps + s->options.lpc_coeff_precision + av_log2(order) <= 32) {
s->flac_dsp.lpc16_encode(res, smp, len, order, coefs, shift);
} else {
s->flac_dsp.lpc32_encode(res, smp, len, order, coefs, shift);
}
return 0;
}
#define DEFAULT_TO_VERBATIM() \
{ \
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; \
if (sub->obits <= 32) \
memcpy(res, smp, n * sizeof(int32_t)); \
return subframe_count_exact(s, sub, 0); \
}
static int encode_residual_ch(FlacEncodeContext *s, int ch) static int encode_residual_ch(FlacEncodeContext *s, int ch)
{ {
int i, n; int i, n;
@ -824,14 +959,25 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
int shift[MAX_LPC_ORDER]; int shift[MAX_LPC_ORDER];
int32_t *res, *smp; int32_t *res, *smp;
int64_t *smp_33bps;
frame = &s->frame; frame = &s->frame;
sub = &frame->subframes[ch]; sub = &frame->subframes[ch];
res = sub->residual; res = sub->residual;
smp = sub->samples; smp = sub->samples;
smp_33bps = frame->samples_33bps;
n = frame->blocksize; n = frame->blocksize;
/* CONSTANT */ /* CONSTANT */
if (sub->obits > 32) {
for (i = 1; i < n; i++)
if(smp_33bps[i] != smp_33bps[0])
break;
if (i == n) {
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
return subframe_count_exact(s, sub, 0);
}
} else {
for (i = 1; i < n; i++) for (i = 1; i < n; i++)
if(smp[i] != smp[0]) if(smp[i] != smp[0])
break; break;
@ -840,12 +986,11 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
res[0] = smp[0]; res[0] = smp[0];
return subframe_count_exact(s, sub, 0); return subframe_count_exact(s, sub, 0);
} }
}
/* VERBATIM */ /* VERBATIM */
if (frame->verbatim_only || n < 5) { if (frame->verbatim_only || n < 5) {
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; DEFAULT_TO_VERBATIM();
memcpy(res, smp, n * sizeof(int32_t));
return subframe_count_exact(s, sub, 0);
} }
min_order = s->options.min_prediction_order; min_order = s->options.min_prediction_order;
@ -862,14 +1007,31 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
opt_order = 0; opt_order = 0;
bits[0] = UINT32_MAX; bits[0] = UINT32_MAX;
for (i = min_order; i <= max_order; i++) { for (i = min_order; i <= max_order; i++) {
if (sub->obits == 33) {
if (encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, i))
continue;
} else if (sub->obits + i >= 32) {
if (encode_residual_fixed_with_residual_limit(res, smp, n, i))
continue;
} else
encode_residual_fixed(res, smp, n, i); encode_residual_fixed(res, smp, n, i);
bits[i] = find_subframe_rice_params(s, sub, i); bits[i] = find_subframe_rice_params(s, sub, i);
if (bits[i] < bits[opt_order]) if (bits[i] < bits[opt_order])
opt_order = i; opt_order = i;
} }
if (opt_order == 0 && bits[0] == UINT32_MAX) {
/* No predictor found with residuals within <INT32_MIN,INT32_MAX],
* so encode a verbatim subframe instead */
DEFAULT_TO_VERBATIM();
}
sub->order = opt_order; sub->order = opt_order;
sub->type_code = sub->type | sub->order; sub->type_code = sub->type | sub->order;
if (sub->order != max_order) { if (sub->order != max_order) {
if (sub->obits == 33)
encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, sub->order);
else if (sub->obits + i >= 32)
encode_residual_fixed_with_residual_limit(res, smp, n, sub->order);
else
encode_residual_fixed(res, smp, n, sub->order); encode_residual_fixed(res, smp, n, sub->order);
find_subframe_rice_params(s, sub, sub->order); find_subframe_rice_params(s, sub, sub->order);
} }
@ -878,6 +1040,14 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
/* LPC */ /* LPC */
sub->type = FLAC_SUBFRAME_LPC; sub->type = FLAC_SUBFRAME_LPC;
if (sub->obits == 33)
/* As ff_lpc_calc_coefs is shared with other codecs and the LSB
* probably isn't predictable anyway, throw away LSB for analysis
* so it fits 32 bit int and existing function can be used
* unmodified */
for (i = 0; i < n; i++)
smp[i] = smp_33bps[i] >> 1;
opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order, opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type, s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
s->options.lpc_passes, omethod, s->options.lpc_passes, omethod,
@ -898,13 +1068,8 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
order = av_clip(order, min_order - 1, max_order - 1); order = av_clip(order, min_order - 1, max_order - 1);
if (order == last_order) if (order == last_order)
continue; continue;
if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(order) <= 32) { if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, order+1, coefs[order], shift[order]))
s->flac_dsp.lpc16_encode(res, smp, n, order+1, coefs[order], continue;
shift[order]);
} else {
s->flac_dsp.lpc32_encode(res, smp, n, order+1, coefs[order],
shift[order]);
}
bits[i] = find_subframe_rice_params(s, sub, order+1); bits[i] = find_subframe_rice_params(s, sub, order+1);
if (bits[i] < bits[opt_index]) { if (bits[i] < bits[opt_index]) {
opt_index = i; opt_index = i;
@ -918,11 +1083,8 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
opt_order = 0; opt_order = 0;
bits[0] = UINT32_MAX; bits[0] = UINT32_MAX;
for (i = min_order-1; i < max_order; i++) { for (i = min_order-1; i < max_order; i++) {
if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) { if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i]))
s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]); continue;
} else {
s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
}
bits[i] = find_subframe_rice_params(s, sub, i+1); bits[i] = find_subframe_rice_params(s, sub, i+1);
if (bits[i] < bits[opt_order]) if (bits[i] < bits[opt_order])
opt_order = i; opt_order = i;
@ -940,11 +1102,8 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
for (i = last-step; i <= last+step; i += step) { for (i = last-step; i <= last+step; i += step) {
if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX) if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
continue; continue;
if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) { if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i]))
s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]); continue;
} else {
s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
}
bits[i] = find_subframe_rice_params(s, sub, i+1); bits[i] = find_subframe_rice_params(s, sub, i+1);
if (bits[i] < bits[opt_order]) if (bits[i] < bits[opt_order])
opt_order = i; opt_order = i;
@ -981,11 +1140,8 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
if (diffsum >8) if (diffsum >8)
continue; continue;
if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order - 1) <= 32) { if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, opt_order, lpc_try, shift[opt_order-1]))
s->flac_dsp.lpc16_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]); continue;
} else {
s->flac_dsp.lpc32_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
}
score = find_subframe_rice_params(s, sub, opt_order); score = find_subframe_rice_params(s, sub, opt_order);
if (score < best_score) { if (score < best_score) {
best_score = score; best_score = score;
@ -1002,10 +1158,10 @@ static int encode_residual_ch(FlacEncodeContext *s, int ch)
for (i = 0; i < sub->order; i++) for (i = 0; i < sub->order; i++)
sub->coefs[i] = coefs[sub->order-1][i]; sub->coefs[i] = coefs[sub->order-1][i];
if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order) <= 32) { if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, sub->order, sub->coefs, sub->shift)) {
s->flac_dsp.lpc16_encode(res, smp, n, sub->order, sub->coefs, sub->shift); /* No predictor found with residuals within <INT32_MIN,INT32_MAX],
} else { * so encode a verbatim subframe instead */
s->flac_dsp.lpc32_encode(res, smp, n, sub->order, sub->coefs, sub->shift); DEFAULT_TO_VERBATIM();
} }
find_subframe_rice_params(s, sub, sub->order); find_subframe_rice_params(s, sub, sub->order);
@ -1072,48 +1228,71 @@ static int encode_frame(FlacEncodeContext *s)
static void remove_wasted_bits(FlacEncodeContext *s) static void remove_wasted_bits(FlacEncodeContext *s)
{ {
int ch, i; int ch, i, wasted_bits;
for (ch = 0; ch < s->channels; ch++) { for (ch = 0; ch < s->channels; ch++) {
FlacSubframe *sub = &s->frame.subframes[ch]; FlacSubframe *sub = &s->frame.subframes[ch];
int32_t v = 0;
if (sub->obits > 32) {
int64_t v = 0;
for (i = 0; i < s->frame.blocksize; i++) {
v |= s->frame.samples_33bps[i];
if (v & 1)
break;
}
if (!v || (v & 1))
return;
v = ff_ctzll(v);
/* If any wasted bits are found, samples are moved
* from frame.samples_33bps to frame.subframes[ch] */
for (i = 0; i < s->frame.blocksize; i++)
sub->samples[i] = s->frame.samples_33bps[i] >> v;
wasted_bits = v;
} else {
int32_t v = 0;
for (i = 0; i < s->frame.blocksize; i++) { for (i = 0; i < s->frame.blocksize; i++) {
v |= sub->samples[i]; v |= sub->samples[i];
if (v & 1) if (v & 1)
break; break;
} }
if (v && !(v & 1)) { if (!v || (v & 1))
return;
v = ff_ctz(v); v = ff_ctz(v);
for (i = 0; i < s->frame.blocksize; i++) for (i = 0; i < s->frame.blocksize; i++)
sub->samples[i] >>= v; sub->samples[i] >>= v;
wasted_bits = v;
}
sub->wasted = v; sub->wasted = wasted_bits;
sub->obits -= v; sub->obits -= wasted_bits;
/* for 24-bit, check if removing wasted bits makes the range better /* for 24-bit, check if removing wasted bits makes the range better
suited for using RICE instead of RICE2 for entropy coding */ * suited for using RICE instead of RICE2 for entropy coding */
if (sub->obits <= 17) if (sub->obits <= 17)
sub->rc.coding_mode = CODING_MODE_RICE; sub->rc.coding_mode = CODING_MODE_RICE;
} }
}
} }
static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n,
int max_rice_param) int max_rice_param, int bps)
{ {
int i, best; int best;
int32_t lt, rt;
uint64_t sum[4]; uint64_t sum[4];
uint64_t score[4]; uint64_t score[4];
int k; int k;
/* calculate sum of 2nd order residual for each channel */ /* calculate sum of 2nd order residual for each channel */
sum[0] = sum[1] = sum[2] = sum[3] = 0; sum[0] = sum[1] = sum[2] = sum[3] = 0;
for (i = 2; i < n; i++) { if(bps < 30) {
int32_t lt, rt;
for (int i = 2; i < n; i++) {
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2]; lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2]; rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
sum[2] += FFABS((lt + rt) >> 1); sum[2] += FFABS((lt + rt) >> 1);
@ -1121,8 +1300,19 @@ static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch,
sum[0] += FFABS(lt); sum[0] += FFABS(lt);
sum[1] += FFABS(rt); sum[1] += FFABS(rt);
} }
} else {
int64_t lt, rt;
for (int i = 2; i < n; i++) {
lt = (int64_t)left_ch[i] - 2*(int64_t)left_ch[i-1] + left_ch[i-2];
rt = (int64_t)right_ch[i] - 2*(int64_t)right_ch[i-1] + right_ch[i-2];
sum[2] += FFABS((lt + rt) >> 1);
sum[3] += FFABS(lt - rt);
sum[0] += FFABS(lt);
sum[1] += FFABS(rt);
}
}
/* estimate bit counts */ /* estimate bit counts */
for (i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
k = find_optimal_param(2 * sum[i], n, max_rice_param); k = find_optimal_param(2 * sum[i], n, max_rice_param);
sum[i] = rice_encode_count( 2 * sum[i], n, k); sum[i] = rice_encode_count( 2 * sum[i], n, k);
} }
@ -1135,7 +1325,7 @@ static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch,
/* return mode with lowest score */ /* return mode with lowest score */
best = 0; best = 0;
for (i = 1; i < 4; i++) for (int i = 1; i < 4; i++)
if (score[i] < score[best]) if (score[i] < score[best])
best = i; best = i;
@ -1150,12 +1340,14 @@ static void channel_decorrelation(FlacEncodeContext *s)
{ {
FlacFrame *frame; FlacFrame *frame;
int32_t *left, *right; int32_t *left, *right;
int i, n; int64_t *side_33bps;
int n;
frame = &s->frame; frame = &s->frame;
n = frame->blocksize; n = frame->blocksize;
left = frame->subframes[0].samples; left = frame->subframes[0].samples;
right = frame->subframes[1].samples; right = frame->subframes[1].samples;
side_33bps = frame->samples_33bps;
if (s->channels != 2) { if (s->channels != 2) {
frame->ch_mode = FLAC_CHMODE_INDEPENDENT; frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
@ -1164,30 +1356,50 @@ static void channel_decorrelation(FlacEncodeContext *s)
if (s->options.ch_mode < 0) { if (s->options.ch_mode < 0) {
int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2; int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2;
frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param); frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param, s->avctx->bits_per_raw_sample);
} else } else
frame->ch_mode = s->options.ch_mode; frame->ch_mode = s->options.ch_mode;
/* perform decorrelation and adjust bits-per-sample */ /* perform decorrelation and adjust bits-per-sample */
if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT) if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
return; return;
if(s->avctx->bits_per_raw_sample == 32) {
if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
int64_t tmp;
for (int i = 0; i < n; i++) {
tmp = left[i];
left[i] = (tmp + right[i]) >> 1;
side_33bps[i] = tmp - right[i];
}
frame->subframes[1].obits++;
} else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
for (int i = 0; i < n; i++)
side_33bps[i] = (int64_t)left[i] - right[i];
frame->subframes[1].obits++;
} else {
for (int i = 0; i < n; i++)
side_33bps[i] = (int64_t)left[i] - right[i];
frame->subframes[0].obits++;
}
} else {
if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) { if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
int32_t tmp; int32_t tmp;
for (i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
tmp = left[i]; tmp = left[i];
left[i] = (tmp + right[i]) >> 1; left[i] = (tmp + right[i]) >> 1;
right[i] = tmp - right[i]; right[i] = tmp - right[i];
} }
frame->subframes[1].obits++; frame->subframes[1].obits++;
} else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
for (i = 0; i < n; i++) for (int i = 0; i < n; i++)
right[i] = left[i] - right[i]; right[i] = left[i] - right[i];
frame->subframes[1].obits++; frame->subframes[1].obits++;
} else { } else {
for (i = 0; i < n; i++) for (int i = 0; i < n; i++)
left[i] -= right[i]; left[i] -= right[i];
frame->subframes[0].obits++; frame->subframes[0].obits++;
} }
}
} }
@ -1235,13 +1447,32 @@ static void write_frame_header(FlacEncodeContext *s)
} }
static inline void set_sr_golomb_flac(PutBitContext *pb, int i, int k)
{
unsigned v, e;
v = ((unsigned)(i) << 1) ^ (i >> 31);
e = (v >> k) + 1;
while (e > 31) {
put_bits(pb, 31, 0);
e -= 31;
}
put_bits(pb, e, 1);
if (k) {
unsigned mask = UINT32_MAX >> (32-k);
put_bits(pb, k, v & mask);
}
}
static void write_subframes(FlacEncodeContext *s) static void write_subframes(FlacEncodeContext *s)
{ {
int ch; int ch;
for (ch = 0; ch < s->channels; ch++) { for (ch = 0; ch < s->channels; ch++) {
FlacSubframe *sub = &s->frame.subframes[ch]; FlacSubframe *sub = &s->frame.subframes[ch];
int i, p, porder, psize; int p, porder, psize;
int32_t *part_end; int32_t *part_end;
int32_t *res = sub->residual; int32_t *res = sub->residual;
int32_t *frame_end = &sub->residual[s->frame.blocksize]; int32_t *frame_end = &sub->residual[s->frame.blocksize];
@ -1255,21 +1486,45 @@ static void write_subframes(FlacEncodeContext *s)
/* subframe */ /* subframe */
if (sub->type == FLAC_SUBFRAME_CONSTANT) { if (sub->type == FLAC_SUBFRAME_CONSTANT) {
if(sub->obits == 33)
put_sbits63(&s->pb, 33, s->frame.samples_33bps[0]);
else if(sub->obits == 32)
put_bits32(&s->pb, res[0]);
else
put_sbits(&s->pb, sub->obits, res[0]); put_sbits(&s->pb, sub->obits, res[0]);
} else if (sub->type == FLAC_SUBFRAME_VERBATIM) { } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
if (sub->obits == 33) {
int64_t *res64 = s->frame.samples_33bps;
int64_t *frame_end64 = &s->frame.samples_33bps[s->frame.blocksize];
while (res64 < frame_end64)
put_sbits63(&s->pb, 33, (*res64++));
} else if (sub->obits == 32) {
while (res < frame_end)
put_bits32(&s->pb, *res++);
} else {
while (res < frame_end) while (res < frame_end)
put_sbits(&s->pb, sub->obits, *res++); put_sbits(&s->pb, sub->obits, *res++);
}
} else { } else {
/* warm-up samples */ /* warm-up samples */
for (i = 0; i < sub->order; i++) if (sub->obits == 33) {
for (int i = 0; i < sub->order; i++)
put_sbits63(&s->pb, 33, s->frame.samples_33bps[i]);
res += sub->order;
} else if (sub->obits == 32) {
for (int i = 0; i < sub->order; i++)
put_bits32(&s->pb, *res++);
} else {
for (int i = 0; i < sub->order; i++)
put_sbits(&s->pb, sub->obits, *res++); put_sbits(&s->pb, sub->obits, *res++);
}
/* LPC coefficients */ /* LPC coefficients */
if (sub->type == FLAC_SUBFRAME_LPC) { if (sub->type == FLAC_SUBFRAME_LPC) {
int cbits = s->options.lpc_coeff_precision; int cbits = s->options.lpc_coeff_precision;
put_bits( &s->pb, 4, cbits-1); put_bits( &s->pb, 4, cbits-1);
put_sbits(&s->pb, 5, sub->shift); put_sbits(&s->pb, 5, sub->shift);
for (i = 0; i < sub->order; i++) for (int i = 0; i < sub->order; i++)
put_sbits(&s->pb, cbits, sub->coefs[i]); put_sbits(&s->pb, cbits, sub->coefs[i]);
} }
@ -1287,7 +1542,7 @@ static void write_subframes(FlacEncodeContext *s)
int k = sub->rc.params[p]; int k = sub->rc.params[p];
put_bits(&s->pb, sub->rc.coding_mode, k); put_bits(&s->pb, sub->rc.coding_mode, k);
while (res < part_end) while (res < part_end)
set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0); set_sr_golomb_flac(&s->pb, *res++, k);
part_end = FFMIN(frame_end, part_end + psize); part_end = FFMIN(frame_end, part_end + psize);
} }
} }
@ -1335,7 +1590,7 @@ static int update_md5_sum(FlacEncodeContext *s, const void *samples)
(const uint16_t *) samples, buf_size / 2); (const uint16_t *) samples, buf_size / 2);
buf = s->md5_buffer; buf = s->md5_buffer;
#endif #endif
} else { } else if (s->avctx->bits_per_raw_sample <= 24) {
int i; int i;
const int32_t *samples0 = samples; const int32_t *samples0 = samples;
uint8_t *tmp = s->md5_buffer; uint8_t *tmp = s->md5_buffer;
@ -1345,6 +1600,15 @@ static int update_md5_sum(FlacEncodeContext *s, const void *samples)
AV_WL24(tmp + 3*i, v); AV_WL24(tmp + 3*i, v);
} }
buf = s->md5_buffer; buf = s->md5_buffer;
} else {
/* s->avctx->bits_per_raw_sample <= 32 */
int i;
const int32_t *samples0 = samples;
uint8_t *tmp = s->md5_buffer;
for (i = 0; i < s->frame.blocksize * s->channels; i++)
AV_WL32(tmp + 4*i, samples0[i]);
buf = s->md5_buffer;
} }
av_md5_update(s->md5ctx, buf, buf_size); av_md5_update(s->md5ctx, buf, buf_size);

View File

@ -363,6 +363,13 @@ static inline void put_bits64(PutBitContext *s, int n, uint64_t value)
} }
} }
static inline void put_sbits63(PutBitContext *pb, int n, int64_t value)
{
av_assert2(n >= 0 && n < 64);
put_bits64(pb, n, (uint64_t)(value) & (~(UINT64_MAX << n)));
}
/** /**
* Return the pointer to the byte where the bitstream writer will put * Return the pointer to the byte where the bitstream writer will put
* the next bit. * the next bit.

View File

@ -151,18 +151,4 @@ static inline void set_sr_golomb(PutBitContext *pb, int i, int k, int limit,
set_ur_golomb(pb, v, k, limit, esc_len); set_ur_golomb(pb, v, k, limit, esc_len);
} }
/**
* write signed golomb rice code (flac).
*/
static inline void set_sr_golomb_flac(PutBitContext *pb, int i, int k,
int limit, int esc_len)
{
int v;
v = -2 * i - 1;
v ^= (v >> 31);
set_ur_golomb_jpegls(pb, v, k, limit, esc_len);
}
#endif /* AVCODEC_PUT_GOLOMB_H */ #endif /* AVCODEC_PUT_GOLOMB_H */