1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

af_hdcd: add experimental 20 and 24-bit decoding support

I don't have any legitimate 20 or 24-bit HDCD to test. It is known
that the PM Model Two would insert packets into 20 and 24-bit output,
but I have no idea what differences in behavior existed when decoding
20 or 24-bit. For now, as with 16-bit, PE (if enabled) will expand the
top 3dB into 9dB and LLE (gain adjust) will be applied if signaled.

Signed-off-by: Burt P <pburt0@gmail.com>
This commit is contained in:
Burt P 2016-10-02 02:25:13 -05:00
parent 4f94f01414
commit f51ddbf83c

View File

@ -964,6 +964,8 @@ typedef struct HDCDContext {
int cdt_ms; /**< code detect timer period in ms */ int cdt_ms; /**< code detect timer period in ms */
int disable_autoconvert; /**< disable any format conversion or resampling in the filter graph */ int disable_autoconvert; /**< disable any format conversion or resampling in the filter graph */
int bits_per_sample; /**< bits per sample 16, 20, or 24 */
/* end AVOption members */ /* end AVOption members */
/** config_input() and config_output() scan links for any resampling /** config_input() and config_output() scan links for any resampling
@ -997,6 +999,11 @@ static const AVOption hdcd_options[] = {
{ "pe", HDCD_ANA_PE_DESC, 0, AV_OPT_TYPE_CONST, {.i64=HDCD_ANA_PE}, 0, 0, A, "analyze_mode" }, { "pe", HDCD_ANA_PE_DESC, 0, AV_OPT_TYPE_CONST, {.i64=HDCD_ANA_PE}, 0, 0, A, "analyze_mode" },
{ "cdt", HDCD_ANA_CDT_DESC, 0, AV_OPT_TYPE_CONST, {.i64=HDCD_ANA_CDT}, 0, 0, A, "analyze_mode" }, { "cdt", HDCD_ANA_CDT_DESC, 0, AV_OPT_TYPE_CONST, {.i64=HDCD_ANA_CDT}, 0, 0, A, "analyze_mode" },
{ "tgm", HDCD_ANA_TGM_DESC, 0, AV_OPT_TYPE_CONST, {.i64=HDCD_ANA_TGM}, 0, 0, A, "analyze_mode" }, { "tgm", HDCD_ANA_TGM_DESC, 0, AV_OPT_TYPE_CONST, {.i64=HDCD_ANA_TGM}, 0, 0, A, "analyze_mode" },
{ "bits_per_sample", "Valid bits per sample (location of the true LSB).",
OFFSET(bits_per_sample), AV_OPT_TYPE_INT, { .i64=16 }, 16, 24, A, "bits_per_sample"},
{ "16", "16-bit (in s32 or s16)", 0, AV_OPT_TYPE_CONST, {.i64=16}, 0, 0, A, "bits_per_sample" },
{ "20", "20-bit (in s32)", 0, AV_OPT_TYPE_CONST, {.i64=20}, 0, 0, A, "bits_per_sample" },
{ "24", "24-bit (in s32)", 0, AV_OPT_TYPE_CONST, {.i64=24}, 0, 0, A, "bits_per_sample" },
{NULL} {NULL}
}; };
@ -1253,29 +1260,34 @@ static int hdcd_analyze(int32_t *samples, int count, int stride, int gain, int t
} }
/** apply HDCD decoding parameters to a series of samples */ /** apply HDCD decoding parameters to a series of samples */
static int hdcd_envelope(int32_t *samples, int count, int stride, int gain, int target_gain, int extend) static int hdcd_envelope(int32_t *samples, int count, int stride, int vbits, int gain, int target_gain, int extend)
{ {
static const int max_asample = sizeof(peaktab) / sizeof(peaktab[0]) - 1; static const int max_asample = sizeof(peaktab) / sizeof(peaktab[0]) - 1;
int32_t *samples_end = samples + stride * count; int32_t *samples_end = samples + stride * count;
int i; int i;
int pe_level = PEAK_EXT_LEVEL, shft = 15;
if (vbits != 16) {
pe_level = (1 << (vbits - 1)) - (0x8000 - PEAK_EXT_LEVEL);
shft = 32 - vbits - 1;
}
av_assert0(PEAK_EXT_LEVEL + max_asample == 0x8000); av_assert0(PEAK_EXT_LEVEL + max_asample == 0x8000);
if (extend) { if (extend) {
for (i = 0; i < count; i++) { for (i = 0; i < count; i++) {
int32_t sample = samples[i * stride]; int32_t sample = samples[i * stride];
int32_t asample = abs(sample) - PEAK_EXT_LEVEL; int32_t asample = abs(sample) - pe_level;
if (asample >= 0) { if (asample >= 0) {
av_assert0(asample <= max_asample); av_assert0(asample <= max_asample);
sample = sample >= 0 ? peaktab[asample] : -peaktab[asample]; sample = sample >= 0 ? peaktab[asample] : -peaktab[asample];
} else } else
sample <<= 15; sample <<= shft;
samples[i * stride] = sample; samples[i * stride] = sample;
} }
} else { } else {
for (i = 0; i < count; i++) for (i = 0; i < count; i++)
samples[i * stride] <<= 15; samples[i * stride] <<= shft;
} }
if (gain <= target_gain) { if (gain <= target_gain) {
@ -1370,7 +1382,7 @@ static void hdcd_process(HDCDContext *ctx, hdcd_state *state, int32_t *samples,
if (ctx->analyze_mode) if (ctx->analyze_mode)
gain = hdcd_analyze(samples, envelope_run, stride, gain, target_gain, peak_extend, ctx->analyze_mode, state->sustain, -1); gain = hdcd_analyze(samples, envelope_run, stride, gain, target_gain, peak_extend, ctx->analyze_mode, state->sustain, -1);
else else
gain = hdcd_envelope(samples, envelope_run, stride, gain, target_gain, peak_extend); gain = hdcd_envelope(samples, envelope_run, stride, ctx->bits_per_sample, gain, target_gain, peak_extend);
samples += envelope_run * stride; samples += envelope_run * stride;
count -= envelope_run; count -= envelope_run;
@ -1382,7 +1394,7 @@ static void hdcd_process(HDCDContext *ctx, hdcd_state *state, int32_t *samples,
if (ctx->analyze_mode) if (ctx->analyze_mode)
gain = hdcd_analyze(samples, lead, stride, gain, target_gain, peak_extend, ctx->analyze_mode, state->sustain, -1); gain = hdcd_analyze(samples, lead, stride, gain, target_gain, peak_extend, ctx->analyze_mode, state->sustain, -1);
else else
gain = hdcd_envelope(samples, lead, stride, gain, target_gain, peak_extend); gain = hdcd_envelope(samples, lead, stride, ctx->bits_per_sample, gain, target_gain, peak_extend);
} }
state->running_gain = gain; state->running_gain = gain;
@ -1422,8 +1434,8 @@ static void hdcd_process_stereo(HDCDContext *ctx, int32_t *samples, int count)
ctx->state[1].sustain, ctx->state[1].sustain,
(ctlret == HDCD_TG_MISMATCH) ); (ctlret == HDCD_TG_MISMATCH) );
} else { } else {
gain[0] = hdcd_envelope(samples, envelope_run, stride, gain[0], ctx->val_target_gain, peak_extend[0]); gain[0] = hdcd_envelope(samples, envelope_run, stride, ctx->bits_per_sample, gain[0], ctx->val_target_gain, peak_extend[0]);
gain[1] = hdcd_envelope(samples + 1, envelope_run, stride, gain[1], ctx->val_target_gain, peak_extend[1]); gain[1] = hdcd_envelope(samples + 1, envelope_run, stride, ctx->bits_per_sample, gain[1], ctx->val_target_gain, peak_extend[1]);
} }
samples += envelope_run * stride; samples += envelope_run * stride;
@ -1444,8 +1456,8 @@ static void hdcd_process_stereo(HDCDContext *ctx, int32_t *samples, int count)
ctx->state[1].sustain, ctx->state[1].sustain,
(ctlret == HDCD_TG_MISMATCH) ); (ctlret == HDCD_TG_MISMATCH) );
} else { } else {
gain[0] = hdcd_envelope(samples, lead, stride, gain[0], ctx->val_target_gain, peak_extend[0]); gain[0] = hdcd_envelope(samples, lead, stride, ctx->bits_per_sample, gain[0], ctx->val_target_gain, peak_extend[0]);
gain[1] = hdcd_envelope(samples + 1, lead, stride, gain[1], ctx->val_target_gain, peak_extend[1]); gain[1] = hdcd_envelope(samples + 1, lead, stride, ctx->bits_per_sample, gain[1], ctx->val_target_gain, peak_extend[1]);
} }
} }
@ -1516,8 +1528,10 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
AVFilterLink *outlink = ctx->outputs[0]; AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out; AVFrame *out;
const int16_t *in_data; const int16_t *in_data;
const int32_t *in_data32;
int32_t *out_data; int32_t *out_data;
int n, c, result; int n, c, result;
int a = 32 - s->bits_per_sample;
out = ff_get_audio_buffer(outlink, in->nb_samples); out = ff_get_audio_buffer(outlink, in->nb_samples);
if (!out) { if (!out) {
@ -1533,16 +1547,32 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
out->format = outlink->format; // is this needed? out->format = outlink->format; // is this needed?
out_data = (int32_t*)out->data[0]; out_data = (int32_t*)out->data[0];
if (inlink->format == AV_SAMPLE_FMT_S16P) { switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
for (n = 0; n < in->nb_samples; n++) for (n = 0; n < in->nb_samples; n++)
for (c = 0; c < in->channels; c++) { for (c = 0; c < in->channels; c++) {
in_data = (int16_t*)in->extended_data[c]; in_data = (int16_t*)in->extended_data[c];
out_data[(n * in->channels) + c] = in_data[n]; out_data[(n * in->channels) + c] = in_data[n];
} }
} else { break;
case AV_SAMPLE_FMT_S16:
in_data = (int16_t*)in->data[0]; in_data = (int16_t*)in->data[0];
for (n = 0; n < in->nb_samples * in->channels; n++) for (n = 0; n < in->nb_samples * in->channels; n++)
out_data[n] = in_data[n]; out_data[n] = in_data[n];
break;
case AV_SAMPLE_FMT_S32P:
for (n = 0; n < in->nb_samples; n++)
for (c = 0; c < in->channels; c++) {
in_data32 = (int32_t*)in->extended_data[c];
out_data[(n * in->channels) + c] = in_data32[n] >> a;
}
break;
case AV_SAMPLE_FMT_S32:
in_data32 = (int32_t*)in->data[0];
for (n = 0; n < in->nb_samples * in->channels; n++)
out_data[n] = in_data32[n] >> a;
break;
} }
if (s->process_stereo) { if (s->process_stereo) {
@ -1583,6 +1613,8 @@ static int query_formats(AVFilterContext *ctx)
static const enum AVSampleFormat sample_fmts_in[] = { static const enum AVSampleFormat sample_fmts_in[] = {
AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16,
AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_NONE AV_SAMPLE_FMT_NONE
}; };
static const enum AVSampleFormat sample_fmts_out[] = { static const enum AVSampleFormat sample_fmts_out[] = {
@ -1684,6 +1716,22 @@ static int config_input(AVFilterLink *inlink) {
av_log(ctx, AV_LOG_VERBOSE, "Auto-convert: %s\n", av_log(ctx, AV_LOG_VERBOSE, "Auto-convert: %s\n",
(ctx->graph->disable_auto_convert) ? "disabled" : "enabled"); (ctx->graph->disable_auto_convert) ? "disabled" : "enabled");
if ((inlink->format == AV_SAMPLE_FMT_S16 ||
inlink->format == AV_SAMPLE_FMT_S16P) &&
s->bits_per_sample != 16) {
av_log(ctx, AV_LOG_WARNING, "bits_per_sample %d does not fit into sample format %s, falling back to 16\n",
s->bits_per_sample, av_get_sample_fmt_name(inlink->format) );
s->bits_per_sample = 16;
} else {
av_log(ctx, AV_LOG_VERBOSE, "Looking for %d-bit HDCD in sample format %s\n",
s->bits_per_sample, av_get_sample_fmt_name(inlink->format) );
}
if (s->bits_per_sample != 16)
av_log(ctx, AV_LOG_WARNING, "20 and 24-bit HDCD decoding is experimental\n");
if (inlink->sample_rate != 44100)
av_log(ctx, AV_LOG_WARNING, "HDCD decoding for sample rates other than 44100 is experimental\n");
hdcd_detect_reset(&s->detect); hdcd_detect_reset(&s->detect);
for (c = 0; c < HDCD_MAX_CHANNELS; c++) { for (c = 0; c < HDCD_MAX_CHANNELS; c++) {
hdcd_reset(&s->state[c], inlink->sample_rate, s->cdt_ms); hdcd_reset(&s->state[c], inlink->sample_rate, s->cdt_ms);