diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c index 763d3b90dd..41d1802fd7 100644 --- a/libavcodec/aaccoder.c +++ b/libavcodec/aaccoder.c @@ -119,18 +119,18 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const int offs[4]; #endif /* USE_REALLY_FULL_SEARCH */ - if(!cb){ - for(i = 0; i < size; i++) + if (!cb) { + for (i = 0; i < size; i++) cost += in[i]*in[i]*lambda; return cost; } #ifndef USE_REALLY_FULL_SEARCH offs[0] = 1; - for(i = 1; i < dim; i++) + for (i = 1; i < dim; i++) offs[i] = offs[i-1]*range; quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); #endif /* USE_REALLY_FULL_SEARCH */ - for(i = 0; i < size; i += dim){ + for (i = 0; i < size; i += dim) { float mincost; int minidx = 0; int minbits = 0; @@ -138,69 +138,69 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const #ifndef USE_REALLY_FULL_SEARCH int (*quants)[2] = &s->qcoefs[i]; mincost = 0.0f; - for(j = 0; j < dim; j++){ + for (j = 0; j < dim; j++) { mincost += in[i+j]*in[i+j]*lambda; } minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minbits = ff_aac_spectral_bits[cb-1][minidx]; mincost += minbits; - for(j = 0; j < (1<= CLIPPED_ESCAPE) { di = t - CLIPPED_ESCAPE; curbits += 21; - }else{ + } else { int c = av_clip(quant(t, Q), 0, 8191); di = t - c*cbrt(c)*IQ; curbits += av_log2(c)*2 - 4 + 1; } - }else{ + } else { di = t - vec[k]*IQ; } - if(vec[k] != 0.0f) + if (vec[k] != 0.0f) curbits++; rd += di*di*lambda; } - }else{ - for(k = 0; k < dim; k++){ + } else { + for (k = 0; k < dim; k++) { float di = in[i+k] - vec[k]*IQ; rd += di*di*lambda; } } rd += curbits; - if(rd < mincost){ + if (rd < mincost) { mincost = rd; minidx = j; minbits = curbits; @@ -208,11 +208,11 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const } cost += mincost; resbits += minbits; - if(cost >= uplim) + if (cost >= uplim) return uplim; } - if(bits) + if (bits) *bits = resbits; return cost; } @@ -234,17 +234,17 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, #endif /* USE_REALLY_FULL_SEARCH */ //START_TIMER - if(!cb) + if (!cb) return; #ifndef USE_REALLY_FULL_SEARCH offs[0] = 1; - for(i = 1; i < dim; i++) + for (i = 1; i < dim; i++) offs[i] = offs[i-1]*range; abs_pow34_v(scaled, in, size); quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); #endif /* USE_REALLY_FULL_SEARCH */ - for(i = 0; i < size; i += dim){ + for (i = 0; i < size; i += dim) { float mincost; int minidx = 0; int minbits = 0; @@ -252,83 +252,83 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, #ifndef USE_REALLY_FULL_SEARCH int (*quants)[2] = &s->qcoefs[i]; mincost = 0.0f; - for(j = 0; j < dim; j++){ + for (j = 0; j < dim; j++) { mincost += in[i+j]*in[i+j]*lambda; } minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minbits = ff_aac_spectral_bits[cb-1][minidx]; mincost += minbits; - for(j = 0; j < (1<= CLIPPED_ESCAPE) { di = t - CLIPPED_ESCAPE; curbits += 21; - }else{ + } else { int c = av_clip(quant(t, Q), 0, 8191); di = t - c*cbrt(c)*IQ; curbits += av_log2(c)*2 - 4 + 1; } - }else{ + } else { di = t - vec[k]*IQ; } - if(vec[k] != 0.0f) + if (vec[k] != 0.0f) curbits++; rd += di*di*lambda; } - }else{ - for(k = 0; k < dim; k++){ + } else { + for (k = 0; k < dim; k++) { float di = in[i+k] - vec[k]*IQ; rd += di*di*lambda; } } rd += curbits; - if(rd < mincost){ + if (rd < mincost) { mincost = rd; minidx = curidx; minbits = curbits; } } put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]); - if(IS_CODEBOOK_UNSIGNED(cb)) - for(j = 0; j < dim; j++) - if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) + if (IS_CODEBOOK_UNSIGNED(cb)) + for (j = 0; j < dim; j++) + if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) put_bits(pb, 1, in[i+j] < 0.0f); - if(cb == ESC_BT){ - for(j = 0; j < 2; j++){ - if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){ + if (cb == ESC_BT) { + for (j = 0; j < 2; j++) { + if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) { int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); int len = av_log2(coef); @@ -370,29 +370,29 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce abs_pow34_v(s->scoefs, sce->coeffs, 1024); start = win*128; - for(cb = 0; cb < 12; cb++){ + for (cb = 0; cb < 12; cb++) { path[0][cb].cost = 0.0f; path[0][cb].prev_idx = -1; path[0][cb].run = 0; } - for(swb = 0; swb < max_sfb; swb++){ + for (swb = 0; swb < max_sfb; swb++) { start2 = start; size = sce->ics.swb_sizes[swb]; - if(sce->zeroes[win*16 + swb]){ - for(cb = 0; cb < 12; cb++){ + if (sce->zeroes[win*16 + swb]) { + for (cb = 0; cb < 12; cb++) { path[swb+1][cb].prev_idx = cb; path[swb+1][cb].cost = path[swb][cb].cost; path[swb+1][cb].run = path[swb][cb].run + 1; } - }else{ + } else { float minrd = next_minrd; int mincb = next_mincb; next_minrd = INFINITY; next_mincb = 0; - for(cb = 0; cb < 12; cb++){ + for (cb = 0; cb < 12; cb++) { float cost_stay_here, cost_get_here; float rd = 0.0f; - for(w = 0; w < group_len; w++){ + for (w = 0; w < group_len; w++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb]; rd += quantize_band_cost(s, sce->coeffs + start + w*128, s->scoefs + start + w*128, size, @@ -401,7 +401,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce } cost_stay_here = path[swb][cb].cost + rd; cost_get_here = minrd + rd + run_bits + 4; - if( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] + if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) cost_stay_here += run_bits; if (cost_get_here < cost_stay_here) { @@ -425,12 +425,12 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce //convert resulting path from backward-linked list stack_len = 0; idx = 0; - for(cb = 1; cb < 12; cb++){ - if(path[max_sfb][cb].cost < path[max_sfb][idx].cost) + for (cb = 1; cb < 12; cb++) { + if (path[max_sfb][cb].cost < path[max_sfb][idx].cost) idx = cb; } ppos = max_sfb; - while(ppos > 0){ + while(ppos > 0) { cb = idx; stackrun[stack_len] = path[ppos][cb].run; stackcb [stack_len] = cb; @@ -440,16 +440,16 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce } //perform actual band info encoding start = 0; - for(i = stack_len - 1; i >= 0; i--){ + for (i = stack_len - 1; i >= 0; i--) { put_bits(&s->pb, 4, stackcb[i]); count = stackrun[i]; memset(sce->zeroes + win*16 + start, !stackcb[i], count); //XXX: memset when band_type is also uint8_t - for(j = 0; j < count; j++){ + for (j = 0; j < count; j++) { sce->band_type[win*16 + start] = stackcb[i]; start++; } - while(count >= run_esc){ + while(count >= run_esc) { put_bits(&s->pb, run_bits, run_esc); count -= run_esc; } @@ -482,13 +482,13 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, int minq; float mincost; - for(i = 0; i < 256; i++){ + for (i = 0; i < 256; i++) { paths[i].cost = 0.0f; paths[i].prev = -1; paths[i].min_val = i; paths[i].max_val = i; } - for(i = 256; i < 256*121; i++){ + for (i = 256; i < 256*121; i++) { paths[i].cost = INFINITY; paths[i].prev = -2; paths[i].min_val = INT_MAX; @@ -496,9 +496,9 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } idx = 256; abs_pow34_v(s->scoefs, sce->coeffs, 1024); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { const float *coefs = sce->coeffs + start; float qmin, qmax; int nz = 0; @@ -506,53 +506,53 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, bandaddr[idx >> 8] = w*16+g; qmin = INT_MAX; qmax = 0.0f; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; - if(band->energy <= band->threshold || band->threshold == 0.0f){ + if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; } sce->zeroes[(w+w2)*16+g] = 0; nz = 1; - for(i = 0; i < sce->ics.swb_sizes[g]; i++){ + for (i = 0; i < sce->ics.swb_sizes[g]; i++) { float t = fabsf(coefs[w2*128+i]); - if(t > 0.0f) qmin = fminf(qmin, t); + if (t > 0.0f) qmin = fminf(qmin, t); qmax = fmaxf(qmax, t); } } - if(nz){ + if (nz) { int minscale, maxscale; float minrd = INFINITY; //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); - for(q = minscale; q < maxscale; q++){ + for (q = minscale; q < maxscale; q++) { float dists[12], dist; memset(dists, 0, sizeof(dists)); - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; int cb; - for(cb = 0; cb <= ESC_BT; cb++){ + for (cb = 0; cb <= ESC_BT; cb++) { dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], q, cb, lambda / band->threshold, INFINITY, NULL); } } dist = dists[0]; - for(i = 1; i <= ESC_BT; i++) + for (i = 1; i <= ESC_BT; i++) dist = fminf(dist, dists[i]); minrd = fminf(minrd, dist); - for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ + for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) { float cost; int minv, maxv; - if(isinf(paths[idx - 256 + i].cost)) + if (isinf(paths[idx - 256 + i].cost)) continue; cost = paths[idx - 256 + i].cost + dist + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; minv = FFMIN(paths[idx - 256 + i].min_val, q); maxv = FFMAX(paths[idx - 256 + i].max_val, q); - if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ + if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) { paths[idx + q].cost = cost; paths[idx + q].prev = idx - 256 + i; paths[idx + q].min_val = minv; @@ -560,24 +560,24 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } } } - }else{ - for(q = 0; q < 256; q++){ - if(!isinf(paths[idx - 256 + q].cost)){ + } else { + for (q = 0; q < 256; q++) { + if (!isinf(paths[idx - 256 + q].cost)) { paths[idx + q].cost = paths[idx - 256 + q].cost + 1; paths[idx + q].prev = idx - 256 + q; paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q); paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q); continue; } - for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ + for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) { float cost; int minv, maxv; - if(isinf(paths[idx - 256 + i].cost)) + if (isinf(paths[idx - 256 + i].cost)) continue; cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; minv = FFMIN(paths[idx - 256 + i].min_val, q); maxv = FFMAX(paths[idx - 256 + i].max_val, q); - if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ + if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) { paths[idx + q].cost = cost; paths[idx + q].prev = idx - 256 + i; paths[idx + q].min_val = minv; @@ -594,20 +594,20 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, idx -= 256; mincost = paths[idx].cost; minq = idx; - for(i = 1; i < 256; i++){ - if(paths[idx + i].cost < mincost){ + for (i = 1; i < 256; i++) { + if (paths[idx + i].cost < mincost) { mincost = paths[idx + i].cost; minq = idx + i; } } - while(minq >= 256){ + while(minq >= 256) { sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF; minq = paths[minq].prev; } //set the same quantizers inside window groups - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) - for(g = 0; g < sce->ics.num_swb; g++) - for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) + for (g = 0; g < sce->ics.num_swb; g++) + for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; } @@ -628,14 +628,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * //XXX: some heuristic to determine initial quantizers will reduce search time memset(dists, 0, sizeof(dists)); //determine zero bands and upper limits - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ - for(g = 0; g < sce->ics.num_swb; g++){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + for (g = 0; g < sce->ics.num_swb; g++) { int nz = 0; float uplim = 0.0f; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; uplim += band->threshold; - if(band->energy <= band->threshold || band->threshold == 0.0f){ + if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; } @@ -643,14 +643,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * } uplims[w*16+g] = uplim *512; sce->zeroes[w*16+g] = !nz; - if(nz) + if (nz) minthr = fminf(minthr, uplim); allz = FFMAX(allz, nz); } } - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ - for(g = 0; g < sce->ics.num_swb; g++){ - if(sce->zeroes[w*16+g]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + for (g = 0; g < sce->ics.num_swb; g++) { + if (sce->zeroes[w*16+g]) { sce->sf_idx[w*16+g] = SCALE_ONE_POS; continue; } @@ -658,7 +658,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * } } - if(!allz) + if (!allz) return; abs_pow34_v(s->scoefs, sce->coeffs, 1024); //perform two-loop search @@ -672,9 +672,9 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * int prev = -1; tbits = 0; fflag = 0; - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { const float *coefs = sce->coeffs + start; const float *scaled = s->scoefs + start; int bits = 0; @@ -682,13 +682,13 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * float mindist = INFINITY; int minbits = 0; - if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) + if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) continue; minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); - for(cb = 0; cb <= ESC_BT; cb++){ + for (cb = 0; cb <= ESC_BT; cb++) { float dist = 0.0f; int bb = 0; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { int b; dist += quantize_band_cost(s, coefs + w2*128, scaled + w2*128, @@ -700,14 +700,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * &b); bb += b; } - if(dist < mindist){ + if (dist < mindist) { mindist = dist; minbits = bb; } } dists[w*16+g] = mindist - minbits; bits = minbits; - if(prev != -1){ + if (prev != -1) { bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; } tbits += bits; @@ -715,36 +715,36 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * prev = sce->sf_idx[w*16+g]; } } - if(tbits > destbits){ - for(i = 0; i < 128; i++){ - if(sce->sf_idx[i] < 218 - qstep){ + if (tbits > destbits) { + for (i = 0; i < 128; i++) { + if (sce->sf_idx[i] < 218 - qstep) { sce->sf_idx[i] += qstep; } } - }else{ - for(i = 0; i < 128; i++){ - if(sce->sf_idx[i] > 60 - qstep){ + } else { + for (i = 0; i < 128; i++) { + if (sce->sf_idx[i] > 60 - qstep) { sce->sf_idx[i] -= qstep; } } } qstep >>= 1; - if(!qstep && tbits > destbits*1.02) + if (!qstep && tbits > destbits*1.02) qstep = 1; - if(sce->sf_idx[0] >= 217)break; + if (sce->sf_idx[0] >= 217)break; }while(qstep); fflag = 0; minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { int prevsc = sce->sf_idx[w*16+g]; - if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) + if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) sce->sf_idx[w*16+g]--; sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); - if(sce->sf_idx[w*16+g] != prevsc) + if (sce->sf_idx[w*16+g] != prevsc) fflag = 1; } } @@ -761,29 +761,29 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda; int last = 0, lastband = 0, curband = 0; float avg_energy = 0.0; - if(sce->ics.num_windows == 1){ + if (sce->ics.num_windows == 1) { start = 0; - for(i = 0; i < 1024; i++){ - if(i - start >= sce->ics.swb_sizes[curband]){ + for (i = 0; i < 1024; i++) { + if (i - start >= sce->ics.swb_sizes[curband]) { start += sce->ics.swb_sizes[curband]; curband++; } - if(sce->coeffs[i]){ + if (sce->coeffs[i]) { avg_energy += sce->coeffs[i] * sce->coeffs[i]; last = i; lastband = curband; } } - }else{ - for(w = 0; w < 8; w++){ + } else { + for (w = 0; w < 8; w++) { const float *coeffs = sce->coeffs + w*128; start = 0; - for(i = 0; i < 128; i++){ - if(i - start >= sce->ics.swb_sizes[curband]){ + for (i = 0; i < 128; i++) { + if (i - start >= sce->ics.swb_sizes[curband]) { start += sce->ics.swb_sizes[curband]; curband++; } - if(coeffs[i]){ + if (coeffs[i]) { avg_energy += coeffs[i] * coeffs[i]; last = FFMAX(last, i); lastband = FFMAX(lastband, curband); @@ -793,41 +793,41 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } last++; avg_energy /= last; - if(avg_energy == 0.0f){ - for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++) + if (avg_energy == 0.0f) { + for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++) sce->sf_idx[i] = SCALE_ONE_POS; return; } - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { float *coefs = sce->coeffs + start; const int size = sce->ics.swb_sizes[g]; int start2 = start, end2 = start + size, peakpos = start; float maxval = -1, thr = 0.0f, t; maxq[w*16+g] = 0.0f; - if(g > lastband){ + if (g > lastband) { maxq[w*16+g] = 0.0f; start += size; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++) + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) memset(coefs + w2*128, 0, sizeof(coefs[0])*size); continue; } - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ - for(i = 0; i < size; i++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { + for (i = 0; i < size; i++) { float t = coefs[w2*128+i]*coefs[w2*128+i]; maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i])); thr += t; - if(sce->ics.num_windows == 1 && maxval < t){ + if (sce->ics.num_windows == 1 && maxval < t) { maxval = t; peakpos = start+i; } } } - if(sce->ics.num_windows == 1){ + if (sce->ics.num_windows == 1) { start2 = FFMAX(peakpos - 2, start2); end2 = FFMIN(peakpos + 3, end2); - }else{ + } else { start2 -= start; end2 -= start; } @@ -839,16 +839,16 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); abs_pow34_v(s->scoefs, sce->coeffs, 1024); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { const float *coefs = sce->coeffs + start; const float *scaled = s->scoefs + start; const int size = sce->ics.swb_sizes[g]; int scf, prev_scf, step; int min_scf = 0, max_scf = 255; float curdiff; - if(maxq[w*16+g] < 21.544){ + if (maxq[w*16+g] < 21.544) { sce->zeroes[w*16+g] = 1; start += size; continue; @@ -856,11 +856,11 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, sce->zeroes[w*16+g] = 0; scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); step = 16; - for(;;){ + for (;;) { float dist = 0.0f; int quant_max; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { int b; dist += quantize_band_cost(s, coefs + w2*128, scaled + w2*128, @@ -874,24 +874,24 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } dist *= 1.0f/512.0f; quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]); - if(quant_max >= 8191){ // too much, return to the previous quantizer + if (quant_max >= 8191) { // too much, return to the previous quantizer sce->sf_idx[w*16+g] = prev_scf; break; } prev_scf = scf; curdiff = fabsf(dist - uplim[w*16+g]); - if(curdiff == 0.0f) + if (curdiff == 0.0f) step = 0; else step = fabsf(log2(curdiff)); - if(dist > uplim[w*16+g]) + if (dist > uplim[w*16+g]) step = -step; - if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){ + if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) { sce->sf_idx[w*16+g] = scf; break; } scf += step; - if(step > 0) + if (step > 0) min_scf = scf; else max_scf = scf; @@ -900,17 +900,17 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } } minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX; - for(i = 1; i < 128; i++){ - if(!sce->sf_idx[i]) + for (i = 1; i < 128; i++) { + if (!sce->sf_idx[i]) sce->sf_idx[i] = sce->sf_idx[i-1]; else minq = FFMIN(minq, sce->sf_idx[i]); } - if(minq == INT_MAX) minq = 0; + if (minq == INT_MAX) minq = 0; minq = FFMIN(minq, SCALE_MAX_POS); maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS); - for(i = 126; i >= 0; i--){ - if(!sce->sf_idx[i]) + for (i = 126; i >= 0; i--) { + if (!sce->sf_idx[i]) sce->sf_idx[i] = sce->sf_idx[i+1]; sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf); } @@ -923,15 +923,15 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, int minq = 255; memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (g = 0; g < sce->ics.num_swb; g++) { + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; - if(band->energy <= band->threshold){ + if (band->energy <= band->threshold) { sce->sf_idx[(w+w2)*16+g] = 218; sce->zeroes[(w+w2)*16+g] = 1; - }else{ + } else { sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); sce->zeroes[(w+w2)*16+g] = 0; } @@ -939,13 +939,13 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, } } } - for(i = 0; i < 128; i++){ + for (i = 0; i < 128; i++) { sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1); } //set the same quantizers inside window groups - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) - for(g = 0; g < sce->ics.num_swb; g++) - for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) + for (g = 0; g < sce->ics.num_swb; g++) + for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; } @@ -956,18 +956,18 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lam float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce1 = &cpe->ch[1]; - if(!cpe->common_window) + if (!cpe->common_window) return; - for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){ - for(g = 0; g < sce0->ics.num_swb; g++){ - if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){ + for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { + for (g = 0; g < sce0->ics.num_swb; g++) { + if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { float dist1 = 0.0f, dist2 = 0.0f; - for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; float minthr = fminf(band0->threshold, band1->threshold); float maxthr = fmaxf(band0->threshold, band1->threshold); - for(i = 0; i < sce0->ics.swb_sizes[g]; i++){ + for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { M[i] = (sce0->coeffs[start+w2*128+i] + sce1->coeffs[start+w2*128+i])*0.5; S[i] = sce0->coeffs[start+w2*128+i] diff --git a/libavcodec/aacenc.c b/libavcodec/aacenc.c index bc18b73a2e..3484521e90 100644 --- a/libavcodec/aacenc.c +++ b/libavcodec/aacenc.c @@ -159,14 +159,14 @@ static av_cold int aac_encode_init(AVCodecContext *avctx) avctx->frame_size = 1024; - for(i = 0; i < 16; i++) - if(avctx->sample_rate == ff_mpeg4audio_sample_rates[i]) + for (i = 0; i < 16; i++) + if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i]) break; - if(i == 16){ + if (i == 16) { av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d\n", avctx->sample_rate); return -1; } - if(avctx->channels > 6){ + if (avctx->channels > 6) { av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", avctx->channels); return -1; } @@ -218,35 +218,35 @@ static void apply_window_and_mdct(AVCodecContext *avctx, AACEncContext *s, if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { memcpy(s->output, sce->saved, sizeof(float)*1024); - if(sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE){ + if (sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE) { memset(s->output, 0, sizeof(s->output[0]) * 448); - for(i = 448; i < 576; i++) + for (i = 448; i < 576; i++) s->output[i] = sce->saved[i] * pwindow[i - 448]; - for(i = 576; i < 704; i++) + for (i = 576; i < 704; i++) s->output[i] = sce->saved[i]; } - if(sce->ics.window_sequence[0] != LONG_START_SEQUENCE){ + if (sce->ics.window_sequence[0] != LONG_START_SEQUENCE) { j = channel; - for (i = 0; i < 1024; i++, j += avctx->channels){ + for (i = 0; i < 1024; i++, j += avctx->channels) { s->output[i+1024] = audio[j] * lwindow[1024 - i - 1]; sce->saved[i] = audio[j] * lwindow[i]; } - }else{ + } else { j = channel; - for(i = 0; i < 448; i++, j += avctx->channels) + for (i = 0; i < 448; i++, j += avctx->channels) s->output[i+1024] = audio[j]; - for(i = 448; i < 576; i++, j += avctx->channels) + for (i = 448; i < 576; i++, j += avctx->channels) s->output[i+1024] = audio[j] * swindow[576 - i - 1]; memset(s->output+1024+576, 0, sizeof(s->output[0]) * 448); j = channel; - for(i = 0; i < 1024; i++, j += avctx->channels) + for (i = 0; i < 1024; i++, j += avctx->channels) sce->saved[i] = audio[j]; } ff_mdct_calc(&s->mdct1024, sce->coeffs, s->output); - }else{ + } else { j = channel; for (k = 0; k < 1024; k += 128) { - for(i = 448 + k; i < 448 + k + 256; i++) + for (i = 448 + k; i < 448 + k + 256; i++) s->output[i - 448 - k] = (i < 1024) ? sce->saved[i] : audio[channel + (i-1024)*avctx->channels]; @@ -255,7 +255,7 @@ static void apply_window_and_mdct(AVCodecContext *avctx, AACEncContext *s, ff_mdct_calc(&s->mdct128, sce->coeffs + k, s->output); } j = channel; - for(i = 0; i < 1024; i++, j += avctx->channels) + for (i = 0; i < 1024; i++, j += avctx->channels) sce->saved[i] = audio[j]; } } @@ -271,12 +271,12 @@ static void put_ics_info(AACEncContext *s, IndividualChannelStream *info) put_bits(&s->pb, 1, 0); // ics_reserved bit put_bits(&s->pb, 2, info->window_sequence[0]); put_bits(&s->pb, 1, info->use_kb_window[0]); - if(info->window_sequence[0] != EIGHT_SHORT_SEQUENCE){ + if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) { put_bits(&s->pb, 6, info->max_sfb); put_bits(&s->pb, 1, 0); // no prediction - }else{ + } else { put_bits(&s->pb, 4, info->max_sfb); - for(w = 1; w < 8; w++){ + for (w = 1; w < 8; w++) { put_bits(&s->pb, 1, !info->group_len[w]); } } @@ -291,9 +291,9 @@ static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe) int i, w; put_bits(pb, 2, cpe->ms_mode); - if(cpe->ms_mode == 1){ - for(w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w]){ - for(i = 0; i < cpe->ch[0].ics.max_sfb; i++) + if (cpe->ms_mode == 1) { + for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w]) { + for (i = 0; i < cpe->ch[0].ics.max_sfb; i++) put_bits(pb, 1, cpe->ms_mask[w*16 + i]); } } @@ -307,34 +307,34 @@ static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, in int i, w, w2, g, ch; int start, sum, maxsfb, cmaxsfb; - for(ch = 0; ch < chans; ch++){ + for (ch = 0; ch < chans; ch++) { IndividualChannelStream *ics = &cpe->ch[ch].ics; start = 0; maxsfb = 0; cpe->ch[ch].pulse.num_pulse = 0; - for(w = 0; w < ics->num_windows*16; w += 16){ - for(g = 0; g < ics->num_swb; g++){ + for (w = 0; w < ics->num_windows*16; w += 16) { + for (g = 0; g < ics->num_swb; g++) { sum = 0; //apply M/S - if(!ch && cpe->ms_mask[w + g]){ - for(i = 0; i < ics->swb_sizes[g]; i++){ + if (!ch && cpe->ms_mask[w + g]) { + for (i = 0; i < ics->swb_sizes[g]; i++) { cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0; cpe->ch[1].coeffs[start+i] = cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i]; } } start += ics->swb_sizes[g]; } - for(cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--); + for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--); maxsfb = FFMAX(maxsfb, cmaxsfb); } ics->max_sfb = maxsfb; //adjust zero bands for window groups - for(w = 0; w < ics->num_windows; w += ics->group_len[w]){ - for(g = 0; g < ics->max_sfb; g++){ + for (w = 0; w < ics->num_windows; w += ics->group_len[w]) { + for (g = 0; g < ics->max_sfb; g++) { i = 1; - for(w2 = w; w2 < w + ics->group_len[w]; w2++){ - if(!cpe->ch[ch].zeroes[w2*16 + g]){ + for (w2 = w; w2 < w + ics->group_len[w]; w2++) { + if (!cpe->ch[ch].zeroes[w2*16 + g]) { i = 0; break; } @@ -344,16 +344,16 @@ static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, in } } - if(chans > 1 && cpe->common_window){ + if (chans > 1 && cpe->common_window) { IndividualChannelStream *ics0 = &cpe->ch[0].ics; IndividualChannelStream *ics1 = &cpe->ch[1].ics; int msc = 0; ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb); ics1->max_sfb = ics0->max_sfb; - for(w = 0; w < ics0->num_windows*16; w += 16) - for(i = 0; i < ics0->max_sfb; i++) - if(cpe->ms_mask[w+i]) msc++; - if(msc == 0 || ics0->max_sfb == 0) cpe->ms_mode = 0; + for (w = 0; w < ics0->num_windows*16; w += 16) + for (i = 0; i < ics0->max_sfb; i++) + if (cpe->ms_mask[w+i]) msc++; + if (msc == 0 || ics0->max_sfb == 0) cpe->ms_mode = 0; else cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2; } } @@ -365,7 +365,7 @@ static void encode_band_info(AACEncContext *s, SingleChannelElement *sce) { int w; - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda); } } @@ -378,11 +378,11 @@ static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s, Single int off = sce->sf_idx[0], diff; int i, w; - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ - for(i = 0; i < sce->ics.max_sfb; i++){ - if(!sce->zeroes[w*16 + i]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + for (i = 0; i < sce->ics.max_sfb; i++) { + if (!sce->zeroes[w*16 + i]) { diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO; - if(diff < 0 || diff > 120) av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n"); + if (diff < 0 || diff > 120) av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n"); off = sce->sf_idx[w*16 + i]; put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]); } @@ -398,11 +398,11 @@ static void encode_pulses(AACEncContext *s, Pulse *pulse) int i; put_bits(&s->pb, 1, !!pulse->num_pulse); - if(!pulse->num_pulse) return; + if (!pulse->num_pulse) return; put_bits(&s->pb, 2, pulse->num_pulse - 1); put_bits(&s->pb, 6, pulse->start); - for(i = 0; i < pulse->num_pulse; i++){ + for (i = 0; i < pulse->num_pulse; i++) { put_bits(&s->pb, 5, pulse->pos[i]); put_bits(&s->pb, 4, pulse->amp[i]); } @@ -415,14 +415,14 @@ static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce) { int start, i, w, w2; - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = 0; - for(i = 0; i < sce->ics.max_sfb; i++){ - if(sce->zeroes[w*16 + i]){ + for (i = 0; i < sce->ics.max_sfb; i++) { + if (sce->zeroes[w*16 + i]) { start += sce->ics.swb_sizes[i]; continue; } - for(w2 = w; w2 < w + sce->ics.group_len[w]; w2++){ + for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) { s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128, sce->ics.swb_sizes[i], sce->sf_idx[w*16 + i], @@ -440,7 +440,7 @@ static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce) static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, int common_window) { put_bits(&s->pb, 8, sce->sf_idx[0]); - if(!common_window) put_ics_info(s, &sce->ics); + if (!common_window) put_ics_info(s, &sce->ics); encode_band_info(s, sce); encode_scale_factors(avctx, s, sce); encode_pulses(s, &sce->pulse); @@ -460,12 +460,12 @@ static void put_bitstream_info(AVCodecContext *avctx, AACEncContext *s, const ch namelen = strlen(name) + 2; put_bits(&s->pb, 3, TYPE_FIL); put_bits(&s->pb, 4, FFMIN(namelen, 15)); - if(namelen >= 15) + if (namelen >= 15) put_bits(&s->pb, 8, namelen - 16); put_bits(&s->pb, 4, 0); //extension type - filler padbits = 8 - (put_bits_count(&s->pb) & 7); align_put_bits(&s->pb); - for(i = 0; i < namelen - 2; i++) + for (i = 0; i < namelen - 2; i++) put_bits(&s->pb, 8, name[i]); put_bits(&s->pb, 12 - padbits, 0); } @@ -480,15 +480,15 @@ static int aac_encode_frame(AVCodecContext *avctx, const uint8_t *chan_map = aac_chan_configs[avctx->channels-1]; int chan_el_counter[4]; - if(s->last_frame) + if (s->last_frame) return 0; - if(data){ - if(!s->psypp){ + if (data) { + if (!s->psypp) { memcpy(s->samples + 1024 * avctx->channels, data, 1024 * avctx->channels * sizeof(s->samples[0])); - }else{ + } else { start_ch = 0; samples2 = s->samples + 1024 * avctx->channels; - for(i = 0; i < chan_map[0]; i++){ + for (i = 0; i < chan_map[0]; i++) { tag = chan_map[i+1]; chans = tag == TYPE_CPE ? 2 : 1; ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch, samples2 + start_ch, start_ch, chans); @@ -496,26 +496,26 @@ static int aac_encode_frame(AVCodecContext *avctx, } } } - if(!avctx->frame_number){ + if (!avctx->frame_number) { memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0])); return 0; } init_put_bits(&s->pb, frame, buf_size*8); - if((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT)){ + if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT)) { put_bitstream_info(avctx, s, LIBAVCODEC_IDENT); } start_ch = 0; memset(chan_el_counter, 0, sizeof(chan_el_counter)); - for(i = 0; i < chan_map[0]; i++){ + for (i = 0; i < chan_map[0]; i++) { FFPsyWindowInfo wi[2]; tag = chan_map[i+1]; chans = tag == TYPE_CPE ? 2 : 1; cpe = &s->cpe[i]; samples2 = samples + start_ch; la = samples2 + 1024 * avctx->channels + start_ch; - if(!data) la = NULL; - for(j = 0; j < chans; j++){ + if (!data) la = NULL; + for (j = 0; j < chans; j++) { IndividualChannelStream *ics = &cpe->ch[j].ics; int k; wi[j] = ff_psy_suggest_window(&s->psy, samples2, la, start_ch + j, ics->window_sequence[0]); @@ -526,7 +526,7 @@ static int aac_encode_frame(AVCodecContext *avctx, ics->num_windows = wi[j].num_windows; ics->swb_sizes = s->psy.bands [ics->num_windows == 8]; ics->num_swb = s->psy.num_bands[ics->num_windows == 8]; - for(k = 0; k < ics->num_windows; k++) + for (k = 0; k < ics->num_windows; k++) ics->group_len[k] = wi[j].grouping[k]; s->cur_channel = start_ch + j; @@ -534,31 +534,31 @@ static int aac_encode_frame(AVCodecContext *avctx, s->coder->search_for_quantizers(avctx, s, &cpe->ch[j], s->lambda); } cpe->common_window = 0; - if(chans > 1 + if (chans > 1 && wi[0].window_type[0] == wi[1].window_type[0] - && wi[0].window_shape == wi[1].window_shape){ + && wi[0].window_shape == wi[1].window_shape) { cpe->common_window = 1; - for(j = 0; j < wi[0].num_windows; j++){ - if(wi[0].grouping[j] != wi[1].grouping[j]){ + for (j = 0; j < wi[0].num_windows; j++) { + if (wi[0].grouping[j] != wi[1].grouping[j]) { cpe->common_window = 0; break; } } } - if(cpe->common_window && s->coder->search_for_ms) + if (cpe->common_window && s->coder->search_for_ms) s->coder->search_for_ms(s, cpe, s->lambda); adjust_frame_information(s, cpe, chans); put_bits(&s->pb, 3, tag); put_bits(&s->pb, 4, chan_el_counter[tag]++); - if(chans == 2){ + if (chans == 2) { put_bits(&s->pb, 1, cpe->common_window); - if(cpe->common_window){ + if (cpe->common_window) { put_ics_info(s, &cpe->ch[0].ics); encode_ms_info(&s->pb, cpe); } } - for(j = 0; j < chans; j++){ + for (j = 0; j < chans; j++) { s->cur_channel = start_ch + j; ff_psy_set_band_info(&s->psy, s->cur_channel, cpe->ch[j].coeffs, &wi[j]); encode_individual_channel(avctx, s, &cpe->ch[j], cpe->common_window); @@ -571,7 +571,7 @@ static int aac_encode_frame(AVCodecContext *avctx, avctx->frame_bits = put_bits_count(&s->pb); // rate control stuff - if(!(avctx->flags & CODEC_FLAG_QSCALE)){ + if (!(avctx->flags & CODEC_FLAG_QSCALE)) { float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits; s->lambda *= ratio; } @@ -580,7 +580,7 @@ static int aac_encode_frame(AVCodecContext *avctx, av_log(avctx, AV_LOG_ERROR, "input buffer violation %d > %d.\n", avctx->frame_bits, 6144*avctx->channels); } - if(!data) + if (!data) s->last_frame = 1; memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0])); return put_bits_count(&s->pb)>>3; diff --git a/libavcodec/aacenc.h b/libavcodec/aacenc.h index 458d3d5d99..01d9836fd3 100644 --- a/libavcodec/aacenc.h +++ b/libavcodec/aacenc.h @@ -32,7 +32,7 @@ struct AACEncContext; -typedef struct AACCoefficientsEncoder{ +typedef struct AACCoefficientsEncoder { void (*search_for_quantizers)(AVCodecContext *avctx, struct AACEncContext *s, SingleChannelElement *sce, const float lambda); void (*encode_window_bands_info)(struct AACEncContext *s, SingleChannelElement *sce, @@ -40,7 +40,7 @@ typedef struct AACCoefficientsEncoder{ void (*quantize_and_encode_band)(struct AACEncContext *s, PutBitContext *pb, const float *in, int size, int scale_idx, int cb, const float lambda); void (*search_for_ms)(struct AACEncContext *s, ChannelElement *cpe, const float lambda); -}AACCoefficientsEncoder; +} AACCoefficientsEncoder; extern AACCoefficientsEncoder ff_aac_coders[]; diff --git a/libavcodec/aacpsy.c b/libavcodec/aacpsy.c index 3880266784..7be5e095f4 100644 --- a/libavcodec/aacpsy.c +++ b/libavcodec/aacpsy.c @@ -112,7 +112,7 @@ static av_cold float ath(float f, float add) + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; } -static av_cold int psy_3gpp_init(FFPsyContext *ctx){ +static av_cold int psy_3gpp_init(FFPsyContext *ctx) { Psy3gppContext *pctx; float barks[1024]; int i, j, g, start; @@ -121,26 +121,26 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx){ ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext)); pctx = (Psy3gppContext*) ctx->model_priv_data; - for(i = 0; i < 1024; i++) + for (i = 0; i < 1024; i++) barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0); minath = ath(3410, ATH_ADD); - for(j = 0; j < 2; j++){ + for (j = 0; j < 2; j++) { Psy3gppCoeffs *coeffs = &pctx->psy_coef[j]; i = 0; prev = 0.0; - for(g = 0; g < ctx->num_bands[j]; g++){ + for (g = 0; g < ctx->num_bands[j]; g++) { i += ctx->bands[j][g]; coeffs->barks[g] = (barks[i - 1] + prev) / 2.0; prev = barks[i - 1]; } - for(g = 0; g < ctx->num_bands[j] - 1; g++){ + for (g = 0; g < ctx->num_bands[j] - 1; g++) { coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW); coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI); } start = 0; - for(g = 0; g < ctx->num_bands[j]; g++){ + for (g = 0; g < ctx->num_bands[j]; g++) { minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD); - for(i = 1; i < ctx->bands[j][g]; i++){ + for (i = 1; i < ctx->bands[j][g]; i++) { minscale = fminf(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD)); } coeffs->ath[g] = minscale - minath; @@ -189,21 +189,21 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, FFPsyWindowInfo wi; memset(&wi, 0, sizeof(wi)); - if(la){ + if (la) { float s[8], v; int switch_to_eight = 0; float sum = 0.0, sum2 = 0.0; int attack_n = 0; - for(i = 0; i < 8; i++){ - for(j = 0; j < 128; j++){ + for (i = 0; i < 8; i++) { + for (j = 0; j < 128; j++) { v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state); sum += v*v; } s[i] = sum; sum2 += sum; } - for(i = 0; i < 8; i++){ - if(s[i] > pch->win_energy * attack_ratio){ + for (i = 0; i < 8; i++) { + if (s[i] > pch->win_energy * attack_ratio) { attack_n = i + 1; switch_to_eight = 1; break; @@ -212,7 +212,7 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, pch->win_energy = pch->win_energy*7/8 + sum2/64; wi.window_type[1] = prev_type; - switch(prev_type){ + switch (prev_type) { case ONLY_LONG_SEQUENCE: wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; break; @@ -229,21 +229,21 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, break; } pch->next_grouping = window_grouping[attack_n]; - }else{ - for(i = 0; i < 3; i++) + } else { + for (i = 0; i < 3; i++) wi.window_type[i] = prev_type; grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; } wi.window_shape = 1; - if(wi.window_type[0] != EIGHT_SHORT_SEQUENCE){ + if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { wi.num_windows = 1; wi.grouping[0] = 1; - }else{ + } else { int lastgrp = 0; wi.num_windows = 8; - for(i = 0; i < 8; i++){ - if(!((grouping >> i) & 1)) + for (i = 0; i < 8; i++) { + if (!((grouping >> i) & 1)) lastgrp = i; wi.grouping[lastgrp]++; } @@ -267,11 +267,11 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs, Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8]; //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" - for(w = 0; w < wi->num_windows*16; w += 16){ - for(g = 0; g < num_bands; g++){ + for (w = 0; w < wi->num_windows*16; w += 16) { + for (g = 0; g < num_bands; g++) { Psy3gppBand *band = &pch->band[w+g]; band->energy = 0.0f; - for(i = 0; i < band_sizes[g]; i++) + for (i = 0; i < band_sizes[g]; i++) band->energy += coefs[start+i] * coefs[start+i]; band->energy *= 1.0f / (512*512); band->thr = band->energy * 0.001258925f; @@ -281,17 +281,17 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs, } } //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation" - for(w = 0; w < wi->num_windows*16; w += 16){ + for (w = 0; w < wi->num_windows*16; w += 16) { Psy3gppBand *band = &pch->band[w]; - for(g = 1; g < num_bands; g++){ + for (g = 1; g < num_bands; g++) { band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]); } - for(g = num_bands - 2; g >= 0; g--){ + for (g = num_bands - 2; g >= 0; g--) { band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]); } - for(g = 0; g < num_bands; g++){ + for (g = 0; g < num_bands; g++) { band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]); - if(wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE){ + if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE) { band[g].thr_quiet = fmaxf(PSY_3GPP_RPEMIN*band[g].thr_quiet, fminf(band[g].thr_quiet, PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); diff --git a/libavcodec/psymodel.c b/libavcodec/psymodel.c index 623254e531..4d6a0ecd07 100644 --- a/libavcodec/psymodel.c +++ b/libavcodec/psymodel.c @@ -35,12 +35,12 @@ av_cold int ff_psy_init(FFPsyContext *ctx, AVCodecContext *avctx, ctx->num_bands = av_malloc (sizeof(ctx->num_bands[0]) * num_lens); memcpy(ctx->bands, bands, sizeof(ctx->bands[0]) * num_lens); memcpy(ctx->num_bands, num_bands, sizeof(ctx->num_bands[0]) * num_lens); - switch(ctx->avctx->codec_id){ + switch (ctx->avctx->codec_id) { case CODEC_ID_AAC: ctx->model = &ff_aac_psy_model; break; } - if(ctx->model->init) + if (ctx->model->init) return ctx->model->init(ctx); return 0; } @@ -60,7 +60,7 @@ void ff_psy_set_band_info(FFPsyContext *ctx, int channel, av_cold void ff_psy_end(FFPsyContext *ctx) { - if(ctx->model->end) + if (ctx->model->end) ctx->model->end(ctx); av_freep(&ctx->bands); av_freep(&ctx->num_bands); @@ -84,16 +84,16 @@ av_cold struct FFPsyPreprocessContext* ff_psy_preprocess_init(AVCodecContext *av ctx = av_mallocz(sizeof(FFPsyPreprocessContext)); ctx->avctx = avctx; - if(avctx->flags & CODEC_FLAG_QSCALE) + if (avctx->flags & CODEC_FLAG_QSCALE) cutoff_coeff = 1.0f / av_clip(1 + avctx->global_quality / FF_QUALITY_SCALE, 1, 8); else cutoff_coeff = avctx->bit_rate / (4.0f * avctx->sample_rate * avctx->channels); ctx->fcoeffs = ff_iir_filter_init_coeffs(FF_FILTER_TYPE_BUTTERWORTH, FF_FILTER_MODE_LOWPASS, FILT_ORDER, cutoff_coeff, 0.0, 0.0); - if(ctx->fcoeffs){ + if (ctx->fcoeffs) { ctx->fstate = av_mallocz(sizeof(ctx->fstate[0]) * avctx->channels); - for(i = 0; i < avctx->channels; i++) + for (i = 0; i < avctx->channels; i++) ctx->fstate[i] = ff_iir_filter_init_state(FILT_ORDER); } return ctx; @@ -104,15 +104,15 @@ void ff_psy_preprocess(struct FFPsyPreprocessContext *ctx, int tag, int channels) { int ch, i; - if(ctx->fstate){ - for(ch = 0; ch < channels; ch++){ + if (ctx->fstate) { + for (ch = 0; ch < channels; ch++) { ff_iir_filter(ctx->fcoeffs, ctx->fstate[tag+ch], ctx->avctx->frame_size, audio + ch, ctx->avctx->channels, dest + ch, ctx->avctx->channels); } - }else{ - for(ch = 0; ch < channels; ch++){ - for(i = 0; i < ctx->avctx->frame_size; i++) + } else { + for (ch = 0; ch < channels; ch++) { + for (i = 0; i < ctx->avctx->frame_size; i++) dest[i*ctx->avctx->channels + ch] = audio[i*ctx->avctx->channels + ch]; } } diff --git a/libavcodec/psymodel.h b/libavcodec/psymodel.h index 5bcf556f0b..bc19d49f73 100644 --- a/libavcodec/psymodel.h +++ b/libavcodec/psymodel.h @@ -30,29 +30,29 @@ /** * single band psychoacoustic information */ -typedef struct FFPsyBand{ +typedef struct FFPsyBand { int bits; float energy; float threshold; float distortion; float perceptual_weight; -}FFPsyBand; +} FFPsyBand; /** * windowing related information */ -typedef struct FFPsyWindowInfo{ +typedef struct FFPsyWindowInfo { int window_type[3]; ///< window type (short/long/transitional, etc.) - current, previous and next int window_shape; ///< window shape (sine/KBD/whatever) int num_windows; ///< number of windows in a frame int grouping[8]; ///< window grouping (for e.g. AAC) int *window_sizes; ///< sequence of window sizes inside one frame (for eg. WMA) -}FFPsyWindowInfo; +} FFPsyWindowInfo; /** * context used by psychoacoustic model */ -typedef struct FFPsyContext{ +typedef struct FFPsyContext { AVCodecContext *avctx; ///< encoder context const struct FFPsyModel *model; ///< encoder-specific model functions @@ -63,7 +63,7 @@ typedef struct FFPsyContext{ int num_lens; ///< number of scalefactor band sets void* model_priv_data; ///< psychoacoustic model implementation private data -}FFPsyContext; +} FFPsyContext; /** * codec-specific psychoacoustic model implementation @@ -74,7 +74,7 @@ typedef struct FFPsyModel { FFPsyWindowInfo (*window)(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type); void (*analyze)(FFPsyContext *ctx, int channel, const float *coeffs, FFPsyWindowInfo *wi); void (*end) (FFPsyContext *apc); -}FFPsyModel; +} FFPsyModel; /** * Initialize psychoacoustic model.