I spotted an interesting pattern that I didn't see before that leads to the implementation being faster.
The bit shifting table I was using before is no longer needed, and was able to remove quite a few lines.
I also add use of FMA on the AVX2 version.
f32 1920x1080 1 thread with prelut
c impl
1434012700 UNITS in lut3d->interp, 1 runs, 0 skips
1434035335 UNITS in lut3d->interp, 2 runs, 0 skips
1423615347 UNITS in lut3d->interp, 4 runs, 0 skips
1426268863 UNITS in lut3d->interp, 8 runs, 0 skips
sse2
905484420 UNITS in lut3d->interp, 1 runs, 0 skips
905659010 UNITS in lut3d->interp, 2 runs, 0 skips
915167140 UNITS in lut3d->interp, 4 runs, 0 skips
915834222 UNITS in lut3d->interp, 8 runs, 0 skips
avx
574794860 UNITS in lut3d->interp, 1 runs, 0 skips
581035090 UNITS in lut3d->interp, 2 runs, 0 skips
584116720 UNITS in lut3d->interp, 4 runs, 0 skips
581460290 UNITS in lut3d->interp, 8 runs, 0 skips
avx2
301698880 UNITS in lut3d->interp, 1 runs, 0 skips
301982880 UNITS in lut3d->interp, 2 runs, 0 skips
306962430 UNITS in lut3d->interp, 4 runs, 0 skips
305472025 UNITS in lut3d->interp, 8 runs, 0 skips
gbrap16 1920x1080 1 thread with prelut
c impl
1480894840 UNITS in lut3d->interp, 1 runs, 0 skips
1502922990 UNITS in lut3d->interp, 2 runs, 0 skips
1496114307 UNITS in lut3d->interp, 4 runs, 0 skips
1492554551 UNITS in lut3d->interp, 8 runs, 0 skips
sse2
980777180 UNITS in lut3d->interp, 1 runs, 0 skips
986121520 UNITS in lut3d->interp, 2 runs, 0 skips
986489840 UNITS in lut3d->interp, 4 runs, 0 skips
998832248 UNITS in lut3d->interp, 8 runs, 0 skips
avx
622212360 UNITS in lut3d->interp, 1 runs, 0 skips
622981160 UNITS in lut3d->interp, 2 runs, 0 skips
645396315 UNITS in lut3d->interp, 4 runs, 0 skips
641057075 UNITS in lut3d->interp, 8 runs, 0 skips
avx2
321336400 UNITS in lut3d->interp, 1 runs, 0 skips
321268920 UNITS in lut3d->interp, 2 runs, 0 skips
323459895 UNITS in lut3d->interp, 4 runs, 0 skips
324949967 UNITS in lut3d->interp, 8 runs, 0 skips
The problem was caused by if the width of the processed block
minus 1 is a multiple of the aligned number the instruction
jle .bscale_scalar would skip the Optimized Loop Step, which
will lead to an incorrect sampling when specifying steps more
than 1. Move the Optimized Loop Step after .bscale_scalar to
ensure the loop step is enabled.
Signed-off-by: Wu Jianhua <jianhua.wu@intel.com>
We introduced a ff_horiz_slice_avx2/512() implemented on a new algorithm.
In a nutshell, the new algorithm does three things, gathering data from
8/16 rows, blurring data, and scattering data back to the image buffer.
Here we used a customized transpose 8x8/16x16 to avoid the huge overhead
brought by gather and scatter instructions, which is dependent on the
temporary buffer called localbuf added newly.
Performance data:
ff_horiz_slice_avx2(old): 109.89
ff_horiz_slice_avx2(new): 666.67
ff_horiz_slice_avx512: 1000
Co-authored-by: Cheng Yanfei <yanfei.cheng@intel.com>
Co-authored-by: Jin Jun <jun.i.jin@intel.com>
Signed-off-by: Wu Jianhua <jianhua.wu@intel.com>
The new vertical slice with AVX2/512 acceleration can significantly
improve the performance of Gaussian Filter 2D.
Performance data:
ff_verti_slice_c: 32.57
ff_verti_slice_avx2: 476.19
ff_verti_slice_avx512: 833.33
Co-authored-by: Cheng Yanfei <yanfei.cheng@intel.com>
Co-authored-by: Jin Jun <jun.i.jin@intel.com>
Signed-off-by: Wu Jianhua <jianhua.wu@intel.com>
x86_32 ABI does not pass float arguments directly on xmm regs, and the Win64
ABI uses only the first four regs for this purpose.
Signed-off-by: James Almer <jamrial@gmail.com>
This fixes the tests filter-refcmp-ssim-yuv and filter-refcmp-ssim-rgb
on i386 after breaking in fcc0424c93.
Signed-off-by: Martin Storsjö <martin@martin.st>
They are not allowed outside of functions. Fixes the warning
"ISO C does not allow extra ‘;’ outside of a function [-Wpedantic]"
when compiling with GCC and -pedantic.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>