The inputs are unused except for this computation so wraparound
does not give an attacker any extra values as they are already fully
controlled
Fixes: signed integer overflow: 0 - -2147483648 cannot be represented in type 'int'
Fixes: 45820/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_EXR_fuzzer-5766159019933696
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Fixes: signed integer overflow: -128275513086 * -76056576 cannot be represented in type 'long'
Fixes: 45818/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_DIRAC_fuzzer-5129799149944832
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Fixes: signed integer overflow: -101 * 71041254 cannot be represented in type 'int'
Fixes: 45938/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_TAK_fuzzer-4687974320701440
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Fixes: signed integer overflow: -2146549696 - 3923884 cannot be represented in type 'int'
Fixes: 45907/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_APE_fuzzer-5992380584558592
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
It is currently a "Picture", an mpegvideo-specific type
that has a lot of baggage, all of which is unnecessary
for new_picture, because only its embedded AVFrame
is ever used. So just use an ordinary AVFrame.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
In the aforementioned case mpegvideo_enc.c calls
ff_mjpeg_encode_stuffing() at the end of every line which
pads the output to byte-alignment and escapes it;
yet it does not write the restart-markers (and also not
the DRI marker when writing the header) and so the output files
are broken.
Fix this by writing these markers depending upon the number of
slices and not the number of threads in use; this also makes
the output of the encoder reproducible given a slice count
and is therefore important if encoder tests that actually use
-threads auto are added in the future.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Our code for writing optimal huffman tables is incompatible
with using multiple slices and hence commit
884506dfe2 that implemented this
also added an assert that slice_context_count is always 1.
Yet this was always wrong: a) The MJPEG-encoder has (and had)
the AV_CODEC_CAP_SLICE_THREADS capability, so asserting that
it always uses one slice context is incorrect.
b) This commit did not add any proper checks that ensured that
optimal huffman tables are never used together with multiple slices.
This only happened with 03eb0515c1.
c) This assert is at the wrong place: ff_mjpeg_encode_init() is
called before the actual slice_context_count is set. This is
the reason why this assert was never triggered.
Therefore this commit removes this assert.
Also remove an assert from the SpeedHQ encoder sharing b) and c).
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
One can use slices without slice-threading. The results for
mpegvideo-encoders are abysmal: AMV, SpeedHQ, H.263, RV10, RV20,
MSMPEG4v2, MSMPEG4v3 and WMV1 produce broken files.
WMV2 meanwhile expects the MpegEncContext given to ff_wmv2_encode_mb()
to be at the beginning of a Wmv2Context (a structure that this encoder
shares with the WMV2 decoder), yet this is only true for the
main context and not for the slice contexts, leading to segfaults.
SpeedHQ additionally triggers an av_assert2, because it is not
byte-aligned at a position where it ought to be byte-aligned.
Given that no codec not supporting slice threading works this commit
disallows using slices unless the encoder supports slice threading.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
checkasm benchmarks on 1.5 GHz Cortex-A72 are as follows.
vc1dsp.vc1_unescape_buffer_c: 918624.7
vc1dsp.vc1_unescape_buffer_neon: 142958.0
Signed-off-by: Ben Avison <bavison@riscosopen.org>
Signed-off-by: Martin Storsjö <martin@martin.st>
checkasm benchmarks on 1.5 GHz Cortex-A72 are as follows.
vc1dsp.vc1_unescape_buffer_c: 655617.7
vc1dsp.vc1_unescape_buffer_neon: 118237.0
Signed-off-by: Ben Avison <bavison@riscosopen.org>
Signed-off-by: Martin Storsjö <martin@martin.st>
checkasm benchmarks on 1.5 GHz Cortex-A72 are as follows. Note that the C
version can still outperform the NEON version in specific cases. The balance
between different code paths is stream-dependent, but in practice the best
case happens about 5% of the time, the worst case happens about 40% of the
time, and the complexity of the remaining cases fall somewhere in between.
Therefore, taking the average of the best and worst case timings is
probably a conservative estimate of the degree by which the NEON code
improves performance.
vc1dsp.vc1_h_loop_filter4_bestcase_c: 19.0
vc1dsp.vc1_h_loop_filter4_bestcase_neon: 48.5
vc1dsp.vc1_h_loop_filter4_worstcase_c: 144.7
vc1dsp.vc1_h_loop_filter4_worstcase_neon: 76.2
vc1dsp.vc1_h_loop_filter8_bestcase_c: 41.0
vc1dsp.vc1_h_loop_filter8_bestcase_neon: 75.0
vc1dsp.vc1_h_loop_filter8_worstcase_c: 294.0
vc1dsp.vc1_h_loop_filter8_worstcase_neon: 102.7
vc1dsp.vc1_h_loop_filter16_bestcase_c: 54.7
vc1dsp.vc1_h_loop_filter16_bestcase_neon: 130.0
vc1dsp.vc1_h_loop_filter16_worstcase_c: 569.7
vc1dsp.vc1_h_loop_filter16_worstcase_neon: 186.7
vc1dsp.vc1_v_loop_filter4_bestcase_c: 20.2
vc1dsp.vc1_v_loop_filter4_bestcase_neon: 47.2
vc1dsp.vc1_v_loop_filter4_worstcase_c: 164.2
vc1dsp.vc1_v_loop_filter4_worstcase_neon: 68.5
vc1dsp.vc1_v_loop_filter8_bestcase_c: 43.5
vc1dsp.vc1_v_loop_filter8_bestcase_neon: 55.2
vc1dsp.vc1_v_loop_filter8_worstcase_c: 316.2
vc1dsp.vc1_v_loop_filter8_worstcase_neon: 72.7
vc1dsp.vc1_v_loop_filter16_bestcase_c: 62.2
vc1dsp.vc1_v_loop_filter16_bestcase_neon: 103.7
vc1dsp.vc1_v_loop_filter16_worstcase_c: 646.5
vc1dsp.vc1_v_loop_filter16_worstcase_neon: 110.7
Signed-off-by: Ben Avison <bavison@riscosopen.org>
Signed-off-by: Martin Storsjö <martin@martin.st>
checkasm benchmarks on 1.5 GHz Cortex-A72 are as follows. Note that the C
version can still outperform the NEON version in specific cases. The balance
between different code paths is stream-dependent, but in practice the best
case happens about 5% of the time, the worst case happens about 40% of the
time, and the complexity of the remaining cases fall somewhere in between.
Therefore, taking the average of the best and worst case timings is
probably a conservative estimate of the degree by which the NEON code
improves performance.
vc1dsp.vc1_h_loop_filter4_bestcase_c: 10.7
vc1dsp.vc1_h_loop_filter4_bestcase_neon: 43.5
vc1dsp.vc1_h_loop_filter4_worstcase_c: 184.5
vc1dsp.vc1_h_loop_filter4_worstcase_neon: 73.7
vc1dsp.vc1_h_loop_filter8_bestcase_c: 31.2
vc1dsp.vc1_h_loop_filter8_bestcase_neon: 62.2
vc1dsp.vc1_h_loop_filter8_worstcase_c: 358.2
vc1dsp.vc1_h_loop_filter8_worstcase_neon: 88.2
vc1dsp.vc1_h_loop_filter16_bestcase_c: 51.0
vc1dsp.vc1_h_loop_filter16_bestcase_neon: 107.7
vc1dsp.vc1_h_loop_filter16_worstcase_c: 722.7
vc1dsp.vc1_h_loop_filter16_worstcase_neon: 140.5
vc1dsp.vc1_v_loop_filter4_bestcase_c: 9.7
vc1dsp.vc1_v_loop_filter4_bestcase_neon: 43.0
vc1dsp.vc1_v_loop_filter4_worstcase_c: 178.7
vc1dsp.vc1_v_loop_filter4_worstcase_neon: 69.0
vc1dsp.vc1_v_loop_filter8_bestcase_c: 30.2
vc1dsp.vc1_v_loop_filter8_bestcase_neon: 50.7
vc1dsp.vc1_v_loop_filter8_worstcase_c: 353.0
vc1dsp.vc1_v_loop_filter8_worstcase_neon: 69.2
vc1dsp.vc1_v_loop_filter16_bestcase_c: 60.0
vc1dsp.vc1_v_loop_filter16_bestcase_neon: 90.0
vc1dsp.vc1_v_loop_filter16_worstcase_c: 714.2
vc1dsp.vc1_v_loop_filter16_worstcase_neon: 97.2
Signed-off-by: Ben Avison <bavison@riscosopen.org>
Signed-off-by: Martin Storsjö <martin@martin.st>
Fixes: Out of array read
Fixes: 45137/clusterfuzz-testcase-minimized-ffmpeg_BSF_VP9_SUPERFRAME_SPLIT_fuzzer-4984270639202304
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
They are invalid in VP9. If any of the frames inside a superframe
had a size of zero, the code would either read into the next frame
or into the superframe index; so check for the length to stop this.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Packets without data need to be handled specially in order to avoid
undefined reads. Pass these packets through unchanged in case there
are no cached packets* and error out in case there are cached packets:
Returning the packet would mess with the order of the packets;
if one returned the zero-sized packet before the superframe that will
be created from the packets in the cache, the zero-sized packet would
overtake the packets in the cache; if one returned the packet later,
the packets that complete the superframe will overtake the zero-sized
packet.
*: This case e.g. encompasses the scenario of updated extradata
side-data at the end.
Fixes: Out of array read
Fixes: 45722/clusterfuzz-testcase-minimized-ffmpeg_BSF_VP9_SUPERFRAME_fuzzer-5173378975137792
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
The existing x86 assembly for loop filters uses the stride as a
full register without clearing/sign extending the upper half
of the registers on x86_64.
This avoids crashes if the caller would have passed nonzero bits
in the previously undefined upper 32 bits of the parameters.
Signed-off-by: Martin Storsjö <martin@martin.st>
Fixes: Out of array write
Fixes: 45613/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_WMALOSSLESS_fuzzer-4539073606320128
Fixes: 46008/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_WMALOSSLESS_fuzzer-4681245747970048
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: James Almer <jamrial@gmail.com>
Fixes: NULL pointer dereference
Fixes: 45955/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_BINKAUDIO_DCT_fuzzer-4842044192849920
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Fixes: division by zero
Fixes: 45811/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_VMDAUDIO_fuzzer-6412592581574656
Fixes: 45979/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_VMDAUDIO_fuzzer-5362043060879360
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Modifying the main context by a slice thread is racy;
so constify the pointer to it in H264SliceContext.
The code itself was already compatible with this change.
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Since 7be2d2a70c only one context
is used. Moving it to H264Context from H264SliceContext is natural.
One could access the ERContext from H264SliceContext
via H264SliceContext.h264->er; yet H264SliceContext.h264 should
naturally be const-qualified, because slice threads should not
modify the main context. The ERContext is an exception
to this, as ff_er_add_slice() is intended to be called simultaneously
by multiple threads. And for this one needs a pointer whose
pointed-to-type is not const-qualified.
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
ff_er_frame_start() initializes ERContext.error_count
to three times the number of macroblocks to decode.
Later ff_er_add_slice() reduces this number by the amount
of macroblocks whose AC resp. DC resp. MV have been finished
(so every correctly decoded MB counts three times).
So the frame has been decoded correctly if error_count is zero
at the end.
The H.264 decoder uses multiple ERContexts when using
slice threading and therefore combines these error counts:
The first slice's ERContext is intended to be initialized
by ff_er_frame_start(), error_count of all the other
slice contexts is intended to be zeroed initially and
all afterwards all the error_counts are summed.
Yet commit 43b434210e
(probably unintentionally) changed the code to set
the first slice's error_count to zero as well.
This leads to bogus error messages in case one decodes
an input video using multiple slices with slice threading
with error concealment enabled (which is not the default)
("concealing 0 DC, 0 AC, 0 MV errors in [IPB] frame");
furthermore the returned frame is marked as corrupt as well
(ffmpeg reports "corrupt decoded frame in stream %d" for this).
This can be fixed easily given that only the first ERContext
is really used since 7be2d2a70c:
Don't reset the error_count; and don't sum the error counts as well.
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
This patch is analogous to 20f9727018:
It hides the internal part of AVBitStreamFilter by adding a new
internal structure FFBitStreamFilter (declared in bsf_internal.h)
that has an AVBitStreamFilter as its first member; the internal
part of AVBitStreamFilter is moved to this new structure.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Otherwise get_pixel_format() will not be called when parsing a subsequent Sequence
Header in non hwaccel enabled scenarios, allowing frame parsing when it shouldn't.
This prevents the scenario seqhdr -> frame_hdr/redundant_frame_hdr -> seqhdr ->
redundant_frame_hdr from having the latter redundant frame header parsed as if it
was a frame header by the decoder because the former was discarded.
Since CBS did not discard it, the latter redundant frame header is output with a
zeroed AV1RawFrameHeader struct, which can have undesired results, like division
by zero with fields normally guaranteed to be anything else.
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: James Almer <jamrial@gmail.com>
It is a more fitting place for them.
Also move the definition of ff_log2_run to mathtables.c.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
bitstream.c is currently the disjoint union of three parts:
The first part is ff_log2_run, the second part are some auxiliary
functions for the PutBits-API; and the third part is the code
for creating VLCs. This commit moves the latter into a file of its own.
This has the advantage of making one of the hacks in tableprint_vlc.h
redundant as vlc.c does not include config.h (whereas the PutBits-API
part does).
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Effectively reverts eaff1aa09e
given that bitswap_32 is no longer used outside of bitstream.c
since 03008c2811.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Fixes: member access within null pointer of type 'const FFCodec' (aka 'const struct FFCodec')
Fixes: 45726/clusterfuzz-testcase-minimized-ffmpeg_DEMUXER_fuzzer-6554445419249664
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Fixes: division by zero
Fixes: 43769/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_AV1_fuzzer-5392562205097984
Fixes: 43950/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_AV1_fuzzer-5769210217758720
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
avctx->ch_layout will be reinitialized using channel_mask later in the
function.
Fixes: 45736/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_WMAPRO_fuzzer-5769886813519872
Signed-off-by: James Almer <jamrial@gmail.com>