This avoids SIMD-optimized functions having to sign-extend their
stride argument manually to be able to do pointer arithmetic.
Also adjust parameter names to be "stride" everywhere.
GNU as evaluates true as '-1' while Apple's variant and llvm's internal
assembler evaluate it as '1'. The best way to avoid this madness is to
eliminate boolean expressions instead of trying to fix it with
preprocessor directives. Use a direct formula to calculate the
required temporary space on the stack in
ff_put_vp8_{epel,bilin}{4,8,16}_h[246]v[246]_armv6().
Fixes a checkasm segfault in vp8dsp.mc when using llvm's internal
assembler for a non-Apple target.
Restore alphabetical order in lists, break overly long lines, do some
prettyprinting, add some explanatory section comments, group parts
together that belong together logically.
Quite a bit faster than int32_to_float_fmul_array8_c calling
ff_int32_to_float_fmul_scalar_neon through FmtConvertContext.
Number of cycles per int32_to_float_fmul_array8 call while decoding
padded.dts on exynos5422:
before after change
cortex-a7: 1270 951 -25%
cortex-a15: 434 285 -34%
checkasm --bench cycle counts: cortex-a15 cortex-a7
int32_to_float_fmul_array8_c: 1730.4 4384.5
int32_to_float_fmul_array8_neon_c: 571.5 1694.3
int32_to_float_fmul_array8_neon: 374.0 1448.8
Interesting are the differences between
int32_to_float_fmul_array8_neon_c and int32_to_float_fmul_array8_neon.
The former is current behaviour of calling
ff_int32_to_float_fmul_scalar_neon repeatedly from the c function,
The raw numbers differ since checkasm uses different lengths than the
dca decoder.
The vector mode was deprecated in ARMv7-A/VFPv3 and various cpu
implementations do not support it in hardware. Vector mode code will
depending the OS either be emulated in software or result in an illegal
instruction on cpus which does not support it. This was not really
problem in practice since NEON implementations of the same functions are
preferred. It will however become a problem for checkasm which tests
every cpu flag separately.
Since this is a cpu feature newer cpu do not support anymore the
behaviour of this flag differs from the other flags. It can be only
activated by runtime cpu feature selection.
Don't include the function pointer table in the code segment
in arm mode.
This shouldn't have any significant performance effect. It does
end up as a few more instructions than before, for ARM, but
only at the entry to this function, not within the fft functions
themselves.
Signed-off-by: Martin Storsjö <martin@martin.st>
These function pointers already existed in the ARM code. Adding them globally
allows calls to the function pointers to access arch-optimized versions of the
functions transparently.
Initialise VC1DSPContext for parser as well as for decoder.
Note, the VC-1 code doesn't actually use the function pointer yet.
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
The previous implementation targeted DTS Coherent Acoustics, which only
requires nbits == 4 (fft16()). This case was (and still is) linked directly
rather than being indirected through ff_fft_calc_vfp(), but now the full
range from radix-4 up to radix-65536 is available. This benefits other codecs
such as AAC and AC3.
The implementaion is based upon the C version, with each routine larger than
radix-16 calling a hierarchy of smaller FFT functions, then performing a
post-processing pass. This pass benefits a lot from loop unrolling to
counter the long pipelines in the VFP. A relaxed calling standard also
reduces the overhead of the call hierarchy, and avoiding the excessive
inlining performed by GCC probably helps with I-cache utilisation too.
I benchmarked the result by measuring the number of gperftools samples that
hit anywhere in the AAC decoder (starting from aac_decode_frame()) or
specifically in the FFT routines (fft4() to fft512() and pass()) for the
same sample AAC stream:
Before After
Mean StdDev Mean StdDev Confidence Change
Audio decode 2245.5 53.1 1599.6 43.8 100.0% +40.4%
FFT routines 940.6 22.0 348.1 20.8 100.0% +170.2%
Signed-off-by: Martin Storsjö <martin@martin.st>
The previous implementation targeted DTS Coherent Acoustics, which only
requires mdct_bits == 6. This relatively small size lent itself to
unrolling the loops a small number of times, and encoding offsets
calculated at assembly time within the load/store instructions of each
iteration.
In the more general case (codecs such as AAC and AC3) much larger arrays
are used - mdct_bits == [8, 9, 11]. The old method does not scale for
these cases, so more integer registers are used with non-unrolled versions
of the loops (and with some stack spillage). The postrotation filter loop
is still unrolled by a factor of 2 to permit the double-buffering of some
VFP registers to facilitate overlap of neighbouring iterations.
I benchmarked the result by measuring the number of gperftools samples
that hit anywhere in the AAC decoder (starting from aac_decode_frame())
or specifically in ff_imdct_half_c / ff_imdct_half_vfp, for the same
example AAC stream:
Before After
Mean StdDev Mean StdDev Confidence Change
aac_decode_frame 2368.1 35.8 2117.2 35.3 100.0% +11.8%
ff_imdct_half_* 457.5 22.4 251.2 16.2 100.0% +82.1%
Signed-off-by: Martin Storsjö <martin@martin.st>
Move the GNU as check before the arch specific asm checks since the .dn
check requires gas compatible assembler.
Disable the VC-1 motion compensation NEON asm which is the only part
using that directive. The integrated assembler in the upcoming clang 3.5
does not support .dn/.qn without plans to change that. Too much effort
to implement it while it is rarely used.
http://llvm.org/bugs/show_bug.cgi?id=18199.
Further performance improvements and security fixes by
Vittorio Giovara, Luca Barbato and Diego Biurrun.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
Signed-off-by: Diego Biurrun <diego@biurrun.de>
Profiling results for overall decode and the output_data function in
particular are as follows:
Before After
Mean StdDev Mean StdDev Confidence Change
6:2 total 339.6 15.1 329.3 16.0 95.8% +3.1% (insignificant)
6:2 function 24.6 6.0 9.9 3.1 100.0% +148.5%
8:2 total 324.5 15.5 323.6 14.3 15.2% +0.3% (insignificant)
8:2 function 20.4 3.9 9.9 3.4 100.0% +104.7%
6:6 total 572.8 20.6 539.9 24.2 100.0% +6.1%
6:6 function 54.5 5.6 16.0 3.8 100.0% +240.9%
8:8 total 741.5 21.2 702.5 18.5 100.0% +5.6%
8:8 function 63.9 7.6 18.4 4.8 100.0% +247.3%
The assembly version has also been tested with a fuzz tester to ensure that
any combinations of inputs not exercised by my available test streams still
generate mathematically identical results to the C version.
Signed-off-by: Martin Storsjö <martin@martin.st>
Profiling results for overall audio decode and the rematrix_channels function
in particular are as follows:
Before After
Mean StdDev Mean StdDev Confidence Change
6:2 total 370.8 17.0 348.8 20.1 99.9% +6.3%
6:2 function 46.4 8.4 45.8 6.6 18.0% +1.2% (insignificant)
8:2 total 343.2 19.0 339.1 15.4 54.7% +1.2% (insignificant)
8:2 function 38.9 3.9 40.2 6.9 52.4% -3.2% (insignificant)
6:6 total 658.4 15.7 604.6 20.8 100.0% +8.9%
6:6 function 109.0 8.7 59.5 5.4 100.0% +83.3%
8:8 total 896.2 24.5 766.4 17.6 100.0% +16.9%
8:8 function 223.4 12.8 93.8 5.0 100.0% +138.3%
The assembly version has also been tested with a fuzz tester to ensure that
any combinations of inputs not exercised by my available test streams still
generate mathematically identical results to the C version.
Signed-off-by: Martin Storsjö <martin@martin.st>
Profiling results for overall audio decode and the mlp_filter_channel(_arm)
function in particular are as follows:
Before After
Mean StdDev Mean StdDev Confidence Change
6:2 total 380.4 22.0 370.8 17.0 87.4% +2.6% (insignificant)
6:2 function 60.7 7.2 36.6 8.1 100.0% +65.8%
8:2 total 357.0 17.5 343.2 19.0 97.8% +4.0% (insignificant)
8:2 function 60.3 8.8 37.3 3.8 100.0% +61.8%
6:6 total 717.2 23.2 658.4 15.7 100.0% +8.9%
6:6 function 140.4 12.9 81.5 9.2 100.0% +72.4%
8:8 total 981.9 16.2 896.2 24.5 100.0% +9.6%
8:8 function 193.4 15.0 103.3 11.5 100.0% +87.2%
Experiments with adding preload instructions to this function yielded no
useful benefit, so these have not been included.
The assembly version has also been tested with a fuzz tester to ensure that
any combinations of inputs not exercised by my available test streams still
generate mathematically identical results to the C version.
Signed-off-by: Martin Storsjö <martin@martin.st>
The function is assigned to a function pointer that does not have the
restrict keyword for that parameter.
This fixes compilation for MSVC builds that don't recognize "restrict",
broken since ed9625eb62.
Based on the aarch64 asm. CPU cycle counts on cortex-a9 compared to
gcc 4.8.2:
before: 475 decicycles in get_cabac_noinline, 67106035 runs, 2829 skips
after: 393 decicycles in get_cabac_noinline, 67106474 runs, 2390 skips
Overall speedup is above 2%. Code generated by clang 3.4 is slower on
the same hardware and the relative change is a little larger.
The overread avoidance fix in cbddee1cca
broke the computation for the last row since it prevented the safe
reading from the height+1-th row.
CC: libav-stable@libav.org
The vector dequantization has a test in a loop preventing effective SIMD
implementation. By moving it out of the loop, this loop can be DSPized.
Therefore, modify the current DSP implementation. In particular, the
DSP implementation no longer has to handle null loop sizes.
The decode_hf implementations have following timings:
For x86 Arrandale:
C SSE SSE2 SSE4
win32: 260 162 119 104
win64: 242 N/A 89 72
The arm NEON optimizations follow in a later patch as external asm. The
now unused check for the y modifier in arm inline asm is removed from
configure.
The scaling factor is constant so it is faster to scale the
FIR coefficients in the tables during compilation.
Signed-off-by: Janne Grunau <janne-libav@jannau.net>
The x86 runs short on registers because numerous elements are not static.
In addition, splitting them allows more optimized code, at least for x86.
Arm asm changes by Janne Grunau.
Signed-off-by: Janne Grunau <janne-libav@jannau.net>
It is currently declared as a macro who is set to inlinable functions,
among which a Neon and a default C implementations.
Add a DSP parameter to each inline function, unused except by the
default C implementation which calls a function from the DSP context.
On an Arrandale CPU, gain for an inlined SSE2 function vs. a call:
- Win32: 29 to 26 cycles
- Win64: 25 to 23 cycles
Signed-off-by: Janne Grunau <janne-libav@jannau.net>
The function macro always sets .align 2 before declaring the
function label (since 5c5e1ea3) and always sets the section to
.text (since 278caa6a).
The .align 5 before certain functions, added in fc252eba, were added
before .text and .align were added to the function macro and thus
became useless/unused when the function macro got them.
This restores the original intention, to align the loop entry
points.
Signed-off-by: Martin Storsjö <martin@martin.st>
This file no longer uses the pld instruction at all, all such uses
have been split into hpeldsp_arm.S.
Signed-off-by: Martin Storsjö <martin@martin.st>