In order to fine-control referencing schemes in VP9 encoding, there
is a need to use VP9E_SET_SVC_REF_FRAME_CONFIG method. This commit
provides a way to use the API through frame metadata.
No longer used by anything.
Unfortunately the old FFT_FLOAT/FFT_FIXED_32 is left as-is. It's
simply too much work for code meant to be all removed anyway.
In either encoder, its impossible for the coefficients to go past 25 bits
right after the MDCT. Our MDCT is numerically stable.
For the floating point encoder, in case a NaN is contained, lrintf() will
raise a floating point exception during the conversion.
The AC3 encoder used to be a separate library called "Aften", which
got merged into libavcodec (literally, SVN commits and all).
The merge preserved as much features from the library as possible.
The code had two versions - a fixed point version and a floating
point version. FFmpeg had floating point DSP code used by other
codecs, the AC3 decoder including, so the floating-point DSP was
simply replaced with FFmpeg's own functions.
However, FFmpeg had no fixed-point audio code at that point. So
the encoder brought along its own fixed-point DSP functions,
including a fixed-point MDCT.
The fixed-point MDCT itself is trivially just a float MDCT with a
different type and each multiply being a fixed-point multiply.
So over time, it got refactored, and the FFT used for all other codecs
was templated.
Due to design decisions at the time, the fixed-point version of the
encoder operates at 16-bits of precision. Although convenient, this,
even at the time, was inadequate and inefficient. The encoder is noisy,
does not produce output comparable to the float encoder, and even
rings at higher frequencies due to the badly approximated winow function.
Enter MIPS (owned by Imagination Technologies at the time). They wanted
quick fixed-point decoding on their FPUless cores. So they contributed
patches to template the AC3 decoder so it had both a fixed-point
and a floating-point version. They also did the same for the AAC decoder.
They however, used 32-bit samples. Not 16-bits. And we did not have
32-bit fixed-point DSP functions, including an MDCT. But instead of
templating our MDCT to output 3 versions (float, 32-bit fixed and 16-bit fixed),
they simply copy-pasted their own MDCT into ours, and completely
ifdeffed our own MDCT code out if a 32-bit fixed point MDCT was selected.
This is also the status quo nowadays - 2 separate MDCTs, one which
produces floating point and 16-bit fixed point versions, and one
sort-of integrated which produces 32-bit MDCT.
MIPS weren't all that interested in encoding, so they left the encoder
as-is, and they didn't care much about the ifdeffery, mess or quality - it's
not their problem.
So the MDCT/FFT code has always been a thorn in anyone looking to clean up
code's eye.
Backstory over. Internally AC3 operates on 25-bit fixed-point coefficients.
So for the floating point version, the encoder simply runs the float MDCT,
and converts the resulting coefficients to 25-bit fixed-point, as AC3 is inherently
a fixed-point codec. For the fixed-point version, the input is 16-bit samples,
so to maximize precision the frame samples are analyzed and the highest set
bit is detected via ac3_max_msb_abs_int16(), and the coefficients are then
scaled up via ac3_lshift_int16(), so the input for the FFT is always at least 14 bits,
computed in normalize_samples(). After FFT, the coefficients are scaled up to 25 bits.
This patch simply changes the encoder to accept 32-bit samples, reusing
the already well-optimized 32-bit MDCT code, allowing us to clean up and drop
a large part of a very messy code of ours, as well as prepare for the future lavu/tx
conversion. The coefficients are simply scaled down to 25 bits during windowing,
skipping 2 separate scalings, as the hacks to extend precision are simply no longer
necessary. There's no point in running the MDCT always at 32 bits when you're
going to drop 6 bits off anyway, the headroom is plenty, and the MDCT rounds
properly.
This also makes the encoder even slightly more accurate over the float version,
as there's no coefficient conversion step necessary.
SIZE SAVINGS:
ARM32:
HARDCODED TABLES:
BASE - 10709590
DROP DSP - 10702872 - diff: -6.56KiB
DROP MDCT - 10667932 - diff: -34.12KiB - both: -40.68KiB
DROP FFT - 10336652 - diff: -323.52KiB - all: -364.20KiB
SOFTCODED TABLES:
BASE - 9685096
DROP DSP - 9678378 - diff: -6.56KiB
DROP MDCT - 9643466 - diff: -34.09KiB - both: -40.65KiB
DROP FFT - 9573918 - diff: -67.92KiB - all: -108.57KiB
ARM64:
HARDCODED TABLES:
BASE - 14641112
DROP DSP - 14633806 - diff: -7.13KiB
DROP MDCT - 14604812 - diff: -28.31KiB - both: -35.45KiB
DROP FFT - 14286826 - diff: -310.53KiB - all: -345.98KiB
SOFTCODED TABLES:
BASE - 13636238
DROP DSP - 13628932 - diff: -7.13KiB
DROP MDCT - 13599866 - diff: -28.38KiB - both: -35.52KiB
DROP FFT - 13542080 - diff: -56.43KiB - all: -91.95KiB
x86:
HARDCODED TABLES:
BASE - 12367336
DROP DSP - 12354698 - diff: -12.34KiB
DROP MDCT - 12331024 - diff: -23.12KiB - both: -35.46KiB
DROP FFT - 12029788 - diff: -294.18KiB - all: -329.64KiB
SOFTCODED TABLES:
BASE - 11358094
DROP DSP - 11345456 - diff: -12.34KiB
DROP MDCT - 11321742 - diff: -23.16KiB - both: -35.50KiB
DROP FFT - 11276946 - diff: -43.75KiB - all: -79.25KiB
PERFORMANCE (10min random s32le):
ARM32 - before - 39.9x - 0m15.046s
ARM32 - after - 28.2x - 0m21.525s
Speed: -30%
ARM64 - before - 36.1x - 0m16.637s
ARM64 - after - 36.0x - 0m16.727s
Speed: -0.5%
x86 - before - 184x - 0m3.277s
x86 - after - 190x - 0m3.187s
Speed: +3%
CBS doesn't change its contents in any way whatsoever internally, and most
users already set it to a const array.
Signed-off-by: James Almer <jamrial@gmail.com>
Commit bdd31feec9 changed the SBC decoder to only set the output
sample format on init, instead of setting it explicitly on each frame,
which is correct. But the SBC parser overrides the sample format to S16,
which triggers a crash when combining the parser and the decoder.
Fix the issue by not setting the sample format anymore in the parser,
which is wrong.
Signed-off-by: James Almer <jamrial@gmail.com>
Runtime checks for whether the encoder is fixed-point or not are
unnecessary here as this is a template; furthermore, there is no
fixed-point EAC-3 encoder, so some checks for whether one is in EAC-3
mode can be omitted when doing fixed-point encoding.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
ff_eac3_exponent_init() set values twice when initializing a static
table; ergo the initialization code must not run concurrently with
a running EAC-3 encoder. Yet this code is executed every time an EAC-3
encoder is initialized. So use ff_thread_once() for this and also for a
similar initialization performed for all AC-3 encoders to make them all
init-threadsafe.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Fixes: left shift of negative value -25824
Fixes: 27754/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_XMA2_fuzzer-5760255962906624
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Also do it for FFT_FLOAT only, as this is the only combination for which
it can be set.
Reviewed-by: Lynne <dev@lynne.ee>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
The Opus header initial padding preskip amount is always to be expressed
relative to 48kHz. However, the encoder delay returned from querying
libopus is relative to the encoding samplerate. Multiply by the
samplerate conversion factor to correct.
Signed-off-by: Arthur Taylor <art@ified.ca>
Fixes: signed integer overflow: -210824 * 16384 cannot be represented in type 'int'
Fixes: 28670/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_ALS_fuzzer-5682310846480384
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
This implements the function drop_obu() as defined in Setion 6.2.1 from the
spec.
In a reading only scenario, units that belong to an operating point the
caller doesn't want should not be parsed.
Signed-off-by: James Almer <jamrial@gmail.com>
The caller may not need all units in a fragment in reading only scenarios.
They could in fact alter global state stored in the private CodedBitstreamType
fields in an undesirable way.
With this change, unit decomposition can be skipped based on parsed values
within the unit.
Signed-off-by: James Almer <jamrial@gmail.com>
The standalone version of Kvazaar sets a default ratecontrol algorithm when
bitrate is set. Mirror this behaviour.
Signed-off-by: Joose Sainio <joose.sainio@tuni.fi>
Signed-off-by: Linjie Fu <linjie.justin.fu@gmail.com>
It's required by the 9.3.1 TableStatCoeff* section.
Following clips have this feature:
WPP_HIGH_TP_444_8BIT_RExt_Apple_2.bit
Bitdepth_A_RExt_Sony_1.bin
Bitdepth_B_RExt_Sony_1.bin
EXTPREC_HIGHTHROUGHPUT_444_16_INTRA_10BIT_RExt_Sony_1.bit
EXTPREC_HIGHTHROUGHPUT_444_16_INTRA_12BIT_RExt_Sony_1.bit
EXTPREC_HIGHTHROUGHPUT_444_16_INTRA_8BIT_RExt_Sony_1.bit
EXTPREC_MAIN_444_16_INTRA_10BIT_RExt_Sony_1.bit
EXTPREC_MAIN_444_16_INTRA_12BIT_RExt_Sony_1.bit
EXTPREC_MAIN_444_16_INTRA_8BIT_RExt_Sony_1.bit
WPP_AND_TILE_10Bit422Test_HIGH_TP_444_10BIT_RExt_Apple_2.bit
WPP_AND_TILE_AND_CABAC_BYPASS_ALIGN_0_HIGH_TP_444_14BIT_RExt_Apple_2.bit
WPP_AND_TILE_AND_CABAC_BYPASS_ALIGN_1_HIGH_TP_444_14BIT_RExt_Apple_2.bit
WPP_AND_TILE_HIGH_TP_444_8BIT_RExt_Apple_2.bit
you can download them from:
https://www.itu.int/wftp3/av-arch/jctvc-site/bitstream_exchange/draft_conformance/RExt/
Signed-off-by: Xu Guangxin <oddstone@gmail.com>
Signed-off-by: Linjie Fu <linjie.justin.fu@gmail.com>
Do it only when requested with the AV_CODEC_EXPORT_DATA_VIDEO_ENC_PARAMS
flag.
Drop previous code using the long-deprecated AV_FRAME_DATA_QP_TABLE*
API. Temporarily disable fate-filter-pp, fate-filter-pp7,
fate-filter-spp. They will be reenabled once these filters are converted
in following commits.
It already uses ff_thread_once() to initialize its static data.
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Besides being more natural it also avoids allocations for separate
arrays of decoded samples/output buffers/....
Reviewed-by: Lynne <dev@lynne.ee>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
The Opus decoder forgot to return an error when allocating an
SwrContext fails.
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Reviewed-by: Lynne <dev@lynne.ee>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>