1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
Commit Graph

9 Commits

Author SHA1 Message Date
Ronald S. Bultje
0c46641784 vp9: split out generic decoding skeleton interface API from VP9 types.
This allows vp9dsp.h to only include the VP9 types header, and not the
decoder skeleton interface which is for hardware decoders (dxva2/vaapi).
2017-03-28 18:04:27 -04:00
Ronald S. Bultje
f8c019944d vp9: re-split the decoder/format/dsp interface header files.
The advantage here is that the internal software decoder interface is
not exposed to the DSP functions or the hardware accelerations.
2017-03-28 18:04:26 -04:00
Clément Bœsch
1c9f4b5078 lavc/vp9: split into vp9{block,data,mvs}
This is following Libav layout to ease merges.
2017-03-27 21:38:21 +02:00
Martin Storsjö
a88db8b9a0 arm: vp9lpf: Implement the mix2_44 function with one single filter pass
For this case, with 8 inputs but only changing 4 of them, we can fit
all 16 input pixels into a q register, and still have enough temporary
registers for doing the loop filter.

The wd=8 filters would require too many temporary registers for
processing all 16 pixels at once though.

Before:                          Cortex A7      A8     A9     A53
vp9_loop_filter_mix2_v_44_16_neon:   289.7   256.2  237.5   181.2
After:
vp9_loop_filter_mix2_v_44_16_neon:   221.2   150.5  177.7   138.0

This is cherrypicked from libav commit
575e31e931.

Signed-off-by: Martin Storsjö <martin@martin.st>
2017-03-11 13:14:51 +02:00
Martin Storsjö
a4d4bad75c arm: Add NEON optimizations for 10 and 12 bit vp9 MC
This work is sponsored by, and copyright, Google.

The plain pixel put/copy functions are used from the 8 bit version,
for the double size (e.g. put16 uses ff_vp9_copy32_neon), and a new
copy128 is added.

Compared with the 8 bit version, the filters can no longer use the
trick to accumulate in 16 bit with only saturation at the end, but now
the accumulators need to be 32 bit. This avoids the need to keep track
of which filter index is the largest though, reducing the size of the
executable code for these filters.

For the horizontal filters, we only do 4 or 8 pixels wide in parallel
(while doing two rows at a time), since we don't have enough register
space to filter 16 pixels wide.

For the vertical filters, we still do 4 and 8 pixels in parallel just
as in the 8 bit case, but we need to store the output after every 2
rows instead of after every 4 rows.

Examples of relative speedup compared to the C version, from checkasm:
                               Cortex    A7     A8     A9    A53
vp9_avg4_10bpp_neon:                   2.25   2.44   3.05   2.16
vp9_avg8_10bpp_neon:                   3.66   8.48   3.86   3.50
vp9_avg16_10bpp_neon:                  3.39   8.26   3.37   2.72
vp9_avg32_10bpp_neon:                  4.03  10.20   4.07   3.42
vp9_avg64_10bpp_neon:                  4.15  10.01   4.13   3.70
vp9_avg_8tap_smooth_4h_10bpp_neon:     3.38   6.22   3.41   4.75
vp9_avg_8tap_smooth_4hv_10bpp_neon:    3.89   6.39   4.30   5.32
vp9_avg_8tap_smooth_4v_10bpp_neon:     5.32   9.73   6.34   7.31
vp9_avg_8tap_smooth_8h_10bpp_neon:     4.45   9.40   4.68   6.87
vp9_avg_8tap_smooth_8hv_10bpp_neon:    4.64   8.91   5.44   6.47
vp9_avg_8tap_smooth_8v_10bpp_neon:     6.44  13.42   8.68   8.79
vp9_avg_8tap_smooth_64h_10bpp_neon:    4.66   9.02   4.84   7.71
vp9_avg_8tap_smooth_64hv_10bpp_neon:   4.61   9.14   4.92   7.10
vp9_avg_8tap_smooth_64v_10bpp_neon:    6.90  14.13   9.57  10.41
vp9_put4_10bpp_neon:                   1.33   1.46   2.09   1.33
vp9_put8_10bpp_neon:                   1.57   3.42   1.83   1.84
vp9_put16_10bpp_neon:                  1.55   4.78   2.17   1.89
vp9_put32_10bpp_neon:                  2.06   5.35   2.14   2.30
vp9_put64_10bpp_neon:                  3.00   2.41   1.95   1.66
vp9_put_8tap_smooth_4h_10bpp_neon:     3.19   5.81   3.31   4.63
vp9_put_8tap_smooth_4hv_10bpp_neon:    3.86   6.22   4.32   5.21
vp9_put_8tap_smooth_4v_10bpp_neon:     5.40   9.77   6.08   7.21
vp9_put_8tap_smooth_8h_10bpp_neon:     4.22   8.41   4.46   6.63
vp9_put_8tap_smooth_8hv_10bpp_neon:    4.56   8.51   5.39   6.25
vp9_put_8tap_smooth_8v_10bpp_neon:     6.60  12.43   8.17   8.89
vp9_put_8tap_smooth_64h_10bpp_neon:    4.41   8.59   4.54   7.49
vp9_put_8tap_smooth_64hv_10bpp_neon:   4.43   8.58   5.34   6.63
vp9_put_8tap_smooth_64v_10bpp_neon:    7.26  13.92   9.27  10.92

For the larger 8tap filters, the speedup vs C code is around 4-14x.

Signed-off-by: Martin Storsjö <martin@martin.st>
2017-01-24 22:35:50 +02:00
Martin Storsjö
cda9a3e80b arm: vp9dsp: Restructure the bpp checks
This work is sponsored by, and copyright, Google.

This is more in line with how it will be extended for more bitdepths.

Signed-off-by: Martin Storsjö <martin@martin.st>
2017-01-24 22:35:44 +02:00
Martin Storsjö
6bec60a683 arm: vp9: Add NEON loop filters
This work is sponsored by, and copyright, Google.

The implementation tries to have smart handling of cases
where no pixels need the full filtering for the 8/16 width
filters, skipping both calculation and writeback of the
unmodified pixels in those cases. The actual effect of this
is hard to test with checkasm though, since it tests the
full filtering, and the benefit depends on how many filtered
blocks use the shortcut.

Examples of relative speedup compared to the C version, from checkasm:
                          Cortex       A7     A8     A9    A53
vp9_loop_filter_h_4_8_neon:          2.72   2.68   1.78   3.15
vp9_loop_filter_h_8_8_neon:          2.36   2.38   1.70   2.91
vp9_loop_filter_h_16_8_neon:         1.80   1.89   1.45   2.01
vp9_loop_filter_h_16_16_neon:        2.81   2.78   2.18   3.16
vp9_loop_filter_mix2_h_44_16_neon:   2.65   2.67   1.93   3.05
vp9_loop_filter_mix2_h_48_16_neon:   2.46   2.38   1.81   2.85
vp9_loop_filter_mix2_h_84_16_neon:   2.50   2.41   1.73   2.85
vp9_loop_filter_mix2_h_88_16_neon:   2.77   2.66   1.96   3.23
vp9_loop_filter_mix2_v_44_16_neon:   4.28   4.46   3.22   5.70
vp9_loop_filter_mix2_v_48_16_neon:   3.92   4.00   3.03   5.19
vp9_loop_filter_mix2_v_84_16_neon:   3.97   4.31   2.98   5.33
vp9_loop_filter_mix2_v_88_16_neon:   3.91   4.19   3.06   5.18
vp9_loop_filter_v_4_8_neon:          4.53   4.47   3.31   6.05
vp9_loop_filter_v_8_8_neon:          3.58   3.99   2.92   5.17
vp9_loop_filter_v_16_8_neon:         3.40   3.50   2.81   4.68
vp9_loop_filter_v_16_16_neon:        4.66   4.41   3.74   6.02

The speedup vs C code is around 2-6x. The numbers are quite
inconclusive though, since the checkasm test runs multiple filterings
on top of each other, so later rounds might end up with different
codepaths (different decisions on which filter to apply, based
on input pixel differences). Disabling the early-exit in the asm
doesn't give a fair comparison either though, since the C code
only does the necessary calcuations for each row.

Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-9x.

This is pretty similar in runtime to the corresponding routines
in libvpx. (This is comparing vpx_lpf_vertical_16_neon,
vpx_lpf_horizontal_edge_8_neon and vpx_lpf_horizontal_edge_16_neon
to vp9_loop_filter_h_16_8_neon, vp9_loop_filter_v_16_8_neon
and vp9_loop_filter_v_16_16_neon - note that the naming of horizonal
and vertical is flipped between the libraries.)

In order to have stable, comparable numbers, the early exits in both
asm versions were disabled, forcing the full filtering codepath.

                           Cortex           A7      A8      A9     A53
vp9_loop_filter_h_16_8_neon:             597.2   472.0   482.4   415.0
libvpx vpx_lpf_vertical_16_neon:         626.0   464.5   470.7   445.0
vp9_loop_filter_v_16_8_neon:             500.2   422.5   429.7   295.0
libvpx vpx_lpf_horizontal_edge_8_neon:   586.5   414.5   415.6   383.2
vp9_loop_filter_v_16_16_neon:            905.0   784.7   791.5   546.0
libvpx vpx_lpf_horizontal_edge_16_neon: 1060.2   751.7   743.5   685.2

Our version is consistently faster on on A7 and A53, marginally slower on
A8, and sometimes faster, sometimes slower on A9 (marginally slower in all
three tests in this particular test run).

This is an adapted cherry-pick from libav commit
dd299a2d6d.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2016-11-15 15:10:03 -05:00
Martin Storsjö
b4dc7c341e arm: vp9: Add NEON itxfm routines
This work is sponsored by, and copyright, Google.

For the transforms up to 8x8, we can fit all the data (including
temporaries) in registers and just do a straightforward transform
of all the data. For 16x16, we do a transform of 4x16 pixels in
4 slices, using a temporary buffer. For 32x32, we transform 4x32
pixels at a time, in two steps of 4x16 pixels each.

Examples of relative speedup compared to the C version, from checkasm:
                         Cortex       A7     A8     A9    A53
vp9_inv_adst_adst_4x4_add_neon:     3.39   5.83   4.17   4.01
vp9_inv_adst_adst_8x8_add_neon:     3.79   4.86   4.23   3.98
vp9_inv_adst_adst_16x16_add_neon:   3.33   4.36   4.11   4.16
vp9_inv_dct_dct_4x4_add_neon:       4.06   6.16   4.59   4.46
vp9_inv_dct_dct_8x8_add_neon:       4.61   6.01   4.98   4.86
vp9_inv_dct_dct_16x16_add_neon:     3.35   3.44   3.36   3.79
vp9_inv_dct_dct_32x32_add_neon:     3.89   3.50   3.79   4.42
vp9_inv_wht_wht_4x4_add_neon:       3.22   5.13   3.53   3.77

Thus, the speedup vs C code is around 3-6x.

This is mostly marginally faster than the corresponding routines
in libvpx on most cores, tested with their 32x32 idct (compared to
vpx_idct32x32_1024_add_neon). These numbers are slightly in libvpx's
favour since their version doesn't clear the input buffer like ours
do (although the effect of that on the total runtime probably is
negligible.)

                           Cortex       A7       A8       A9      A53
vp9_inv_dct_dct_32x32_add_neon:    18436.8  16874.1  14235.1  11988.9
libvpx vpx_idct32x32_1024_add_neon 20789.0  13344.3  15049.9  13030.5

Only on the Cortex A8, the libvpx function is faster. On the other cores,
ours is slightly faster even though ours has got source block clearing
integrated.

This is an adapted cherry-pick from libav commits
a67ae67083 and
52d196fb30.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2016-11-15 15:10:03 -05:00
Martin Storsjö
68caef9d48 arm: vp9: Add NEON optimizations of VP9 MC functions
This work is sponsored by, and copyright, Google.

The filter coefficients are signed values, where the product of the
multiplication with one individual filter coefficient doesn't
overflow a 16 bit signed value (the largest filter coefficient is
127). But when the products are accumulated, the resulting sum can
overflow the 16 bit signed range. Instead of accumulating in 32 bit,
we accumulate the largest product (either index 3 or 4) last with a
saturated addition.

(The VP8 MC asm does something similar, but slightly simpler, by
accumulating each half of the filter separately. In the VP9 MC
filters, each half of the filter can also overflow though, so the
largest component has to be handled individually.)

Examples of relative speedup compared to the C version, from checkasm:
                       Cortex      A7     A8     A9    A53
vp9_avg4_neon:                   1.71   1.15   1.42   1.49
vp9_avg8_neon:                   2.51   3.63   3.14   2.58
vp9_avg16_neon:                  2.95   6.76   3.01   2.84
vp9_avg32_neon:                  3.29   6.64   2.85   3.00
vp9_avg64_neon:                  3.47   6.67   3.14   2.80
vp9_avg_8tap_smooth_4h_neon:     3.22   4.73   2.76   4.67
vp9_avg_8tap_smooth_4hv_neon:    3.67   4.76   3.28   4.71
vp9_avg_8tap_smooth_4v_neon:     5.52   7.60   4.60   6.31
vp9_avg_8tap_smooth_8h_neon:     6.22   9.04   5.12   9.32
vp9_avg_8tap_smooth_8hv_neon:    6.38   8.21   5.72   8.17
vp9_avg_8tap_smooth_8v_neon:     9.22  12.66   8.15  11.10
vp9_avg_8tap_smooth_64h_neon:    7.02  10.23   5.54  11.58
vp9_avg_8tap_smooth_64hv_neon:   6.76   9.46   5.93   9.40
vp9_avg_8tap_smooth_64v_neon:   10.76  14.13   9.46  13.37
vp9_put4_neon:                   1.11   1.47   1.00   1.21
vp9_put8_neon:                   1.23   2.17   1.94   1.48
vp9_put16_neon:                  1.63   4.02   1.73   1.97
vp9_put32_neon:                  1.56   4.92   2.00   1.96
vp9_put64_neon:                  2.10   5.28   2.03   2.35
vp9_put_8tap_smooth_4h_neon:     3.11   4.35   2.63   4.35
vp9_put_8tap_smooth_4hv_neon:    3.67   4.69   3.25   4.71
vp9_put_8tap_smooth_4v_neon:     5.45   7.27   4.49   6.52
vp9_put_8tap_smooth_8h_neon:     5.97   8.18   4.81   8.56
vp9_put_8tap_smooth_8hv_neon:    6.39   7.90   5.64   8.15
vp9_put_8tap_smooth_8v_neon:     9.03  11.84   8.07  11.51
vp9_put_8tap_smooth_64h_neon:    6.78   9.48   4.88  10.89
vp9_put_8tap_smooth_64hv_neon:   6.99   8.87   5.94   9.56
vp9_put_8tap_smooth_64v_neon:   10.69  13.30   9.43  14.34

For the larger 8tap filters, the speedup vs C code is around 5-14x.

This is significantly faster than libvpx's implementation of the same
functions, at least when comparing the put_8tap_smooth_64 functions
(compared to vpx_convolve8_horiz_neon and vpx_convolve8_vert_neon from
libvpx).

Absolute runtimes from checkasm:
                          Cortex      A7        A8        A9       A53
vp9_put_8tap_smooth_64h_neon:    20150.3   14489.4   19733.6   10863.7
libvpx vpx_convolve8_horiz_neon: 52623.3   19736.4   21907.7   25027.7

vp9_put_8tap_smooth_64v_neon:    14455.0   12303.9   13746.4    9628.9
libvpx vpx_convolve8_vert_neon:  42090.0   17706.2   17659.9   16941.2

Thus, on the A9, the horizontal filter is only marginally faster than
libvpx, while our version is significantly faster on the other cores,
and the vertical filter is significantly faster on all cores. The
difference is especially large on the A7.

The libvpx implementation does the accumulation in 32 bit, which
probably explains most of the differences.

This is an adapted cherry-pick from libav commits
ffbd1d2b00,
392caa65df,
557c1675cf and
11623217e3.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2016-11-15 15:10:03 -05:00