xHE-AAC relies on the same postfilter mechanism
that Opus uses to improve clarity (albeit with a steeper
deemphasis filter).
The code to apply it is identical, it's still just a
simple IIR low-pass filter. This commit makes it possible
to use alternative constants.
libavcodec/aarch64/vc1dsp_neon.S is skipped here, as it intentionally
uses a layered indentation style to visually show how different
unrolled/interleaved phases fit together.
Signed-off-by: Martin Storsjö <martin@martin.st>
Some functions have slightly different indentation styles; try
to match the surrounding code.
libavcodec/aarch64/vc1dsp_neon.S is skipped here, as it intentionally
uses a layered indentation style to visually show how different
unrolled/interleaved phases fit together.
Signed-off-by: Martin Storsjö <martin@martin.st>
153372 UNITS in postfilter_c, 65536 runs, 0 skips
73164 UNITS in postfilter_neon, 65536 runs, 0 skips -> 2.1x speedup
80591 UNITS in deemphasis_c, 131072 runs, 0 skips
43969 UNITS in deemphasis_neon, 131072 runs, 0 skips -> 1.83x speedup
Total decoder speedup: ~15% on a Raspberry Pi 3 (from 28.1x to 33.5x realtime)
Deemphasis SIMD based on the following unrolling:
const float c1 = CELT_EMPH_COEFF, c2 = c1*c1, c3 = c2*c1, c4 = c3*c1;
float state = coeff;
for (int i = 0; i < len; i += 4) {
y[0] = x[0] + c1*state;
y[1] = x[1] + c2*state + c1*x[0];
y[2] = x[2] + c3*state + c1*x[1] + c2*x[0];
y[3] = x[3] + c4*state + c1*x[2] + c2*x[1] + c3*x[0];
state = y[3];
y += 4;
x += 4;
}
Unlike the x86 version, duplication is used instead of pslldq so
the structure and tables are different.