The twoloop coder is highly loaded with (pseudo-)perceptual metrics,
and the aim of the tests is to piece-wise test each function of the
encoder, for which the 'fast' coder is perfect, since it only decides
on which scalefactors to use, rather than enable or disable encoder
features.
This simply performs a 2nd pass if a LSE is encountered with GRAY8
Fixes: tickets/3933/128.jls
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Deprecated in c29038f304.
The resample filter based upon this library has been removed as well.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Signed-off-by: James Almer <jamrial@gmail.com>
This sadly required making changes to the code itself,
due to the same context needing to be reused for both versions.
The lookup table had to be duplicated for both versions.
Notice that the order of the APIC tracks is currently wrong. This is
a superposition of two bugs: (i) Both muxers write the attached
pictures in the order they arrive in the muxer and not in the
stream_index order, leading to attached pictures that are copied being
written earlier because their timestamp is AV_NOPTS_VALUE, whereas the
timestamp of the encoded pictures is 0. (ii) A bug in the id3v2 parsing
code reverses the order of the parsed pictures.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Specifically test that the WebVTT flavour is correctly mapped to
the Matroska/WebM CodecID and back; and test that dispositions
unsupported by WebM are discarded even when they would be supported
by Matroska.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
This makes av_read_frame() return packets with proper timestamps.
As a result, seeking now works in combination with streamcopy.
A FATE-test for this has been added.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
The test sample has to have no file extension, otherwise probing
happens to work, based off file extension alone, and we want to
test the actual probing function.
Signed-off-by: Derek Buitenhuis <derek.buitenhuis@gmail.com>
Enables writing TTML documents or encoded TTML paragraphs as such
documents.
Additionally, a test for the combined TTML encoder and muxer has
been added to validate that the components still work.
Signed-off-by: Jan Ekström <jan.ekstrom@24i.com>
Some FATE tests use files created by other FATE tests as input files;
this mostly affects the seek tests which use files from vsynth_lena as
well as acodec-pcm as input files. In order to make this possible the
temporary files of all the vsynth* and all acodec-pcm tests are kept.
Yet only a fraction of these files are actually used. This commit
changes this to only keep the files that are actually needed for other
tests. This reduces the size of the tests/data/fate folder after a full
FATE run from 2024727441B to 138739312B.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
AVID streams - currently handled by the AVRN decoder - can be (depending
on extradata contents) either MJPEG or raw video. To decode the MJPEG
variant, the AVRN decoder currently instantiates a MJPEG decoder
internally and forwards decoded frames to the caller (possibly after
cropping them).
This is suboptimal, because the AVRN decoder does not forward all the
features of the internal MJPEG decoder, such as direct rendering.
Handling such forwarding in a full and generic manner would be quite
hard, so it is simpler to just handle those streams in the MJPEG decoder
directly.
The AVRN decoder, which now handles only the raw streams, can now be
marked as supporting direct rendering.
This also removes the last remaining internal use of the obsolete
decoding API.
This provides coverage for writing BlockGroups with BlockAdditional
and ReferenceBlock elements. It also tests setting the hearing impaired
disposition (it fits given that this video has no audio so one needs to
be able to read lips to understand anything).
Reviewed-by: Ridley Combs <rcombs@rcombs.me>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
The FATE suite already contains a file containing mastering display
and content light level metadata: Meridian-Apple_ProResProxy-HDR10.mxf
This file is used to test both the Matroska muxer and demuxer.
Reviewed-by: Ridley Combs <rcombs@rcombs.me>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
The mxf_d10 muxer is very picky regarding the input it accepts:
The only video accepted is MPEG-2 with absolutely constant bitrate,
i.e. all packets need to have exactly the same size; and only a few
bitrates are accepted.
The sample file used did not abide by this: Writing the first packet
(a video packet) errors out and afterwards an audio packet from the
muxing queue has been written. That's all besides metadata (which this
test is about). The FFmpeg cli returned an error, but said error has
been ignored by the md5 test.
This commit changes the test to actually send a compliant stream to the
muxer, so that it does not error out; furthermore, the test is changed
to explicitly check the metadata instead of it only being implicitly
included in the md5 checksum. The compliant stream is created by our
encoder at runtime.
Finally, the test now also covers writing user-specified
product/company/version identification.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Also, test modifying colorspace properties and the default_mode
passthrough which is used here to create a file that has no default
track at all.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
It furthermore tests the demuxer's handling of chained SeekHeads,
level 1-elements after the Clusters and the muxer's capability of
writing huge TrackNumbers as well as expanding the Cues' length field
by one byte if necessary to fill the reserved space. It also tests
propagation of metadata.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
No longer used by anything.
Unfortunately the old FFT_FLOAT/FFT_FIXED_32 is left as-is. It's
simply too much work for code meant to be all removed anyway.
The AC3 encoder used to be a separate library called "Aften", which
got merged into libavcodec (literally, SVN commits and all).
The merge preserved as much features from the library as possible.
The code had two versions - a fixed point version and a floating
point version. FFmpeg had floating point DSP code used by other
codecs, the AC3 decoder including, so the floating-point DSP was
simply replaced with FFmpeg's own functions.
However, FFmpeg had no fixed-point audio code at that point. So
the encoder brought along its own fixed-point DSP functions,
including a fixed-point MDCT.
The fixed-point MDCT itself is trivially just a float MDCT with a
different type and each multiply being a fixed-point multiply.
So over time, it got refactored, and the FFT used for all other codecs
was templated.
Due to design decisions at the time, the fixed-point version of the
encoder operates at 16-bits of precision. Although convenient, this,
even at the time, was inadequate and inefficient. The encoder is noisy,
does not produce output comparable to the float encoder, and even
rings at higher frequencies due to the badly approximated winow function.
Enter MIPS (owned by Imagination Technologies at the time). They wanted
quick fixed-point decoding on their FPUless cores. So they contributed
patches to template the AC3 decoder so it had both a fixed-point
and a floating-point version. They also did the same for the AAC decoder.
They however, used 32-bit samples. Not 16-bits. And we did not have
32-bit fixed-point DSP functions, including an MDCT. But instead of
templating our MDCT to output 3 versions (float, 32-bit fixed and 16-bit fixed),
they simply copy-pasted their own MDCT into ours, and completely
ifdeffed our own MDCT code out if a 32-bit fixed point MDCT was selected.
This is also the status quo nowadays - 2 separate MDCTs, one which
produces floating point and 16-bit fixed point versions, and one
sort-of integrated which produces 32-bit MDCT.
MIPS weren't all that interested in encoding, so they left the encoder
as-is, and they didn't care much about the ifdeffery, mess or quality - it's
not their problem.
So the MDCT/FFT code has always been a thorn in anyone looking to clean up
code's eye.
Backstory over. Internally AC3 operates on 25-bit fixed-point coefficients.
So for the floating point version, the encoder simply runs the float MDCT,
and converts the resulting coefficients to 25-bit fixed-point, as AC3 is inherently
a fixed-point codec. For the fixed-point version, the input is 16-bit samples,
so to maximize precision the frame samples are analyzed and the highest set
bit is detected via ac3_max_msb_abs_int16(), and the coefficients are then
scaled up via ac3_lshift_int16(), so the input for the FFT is always at least 14 bits,
computed in normalize_samples(). After FFT, the coefficients are scaled up to 25 bits.
This patch simply changes the encoder to accept 32-bit samples, reusing
the already well-optimized 32-bit MDCT code, allowing us to clean up and drop
a large part of a very messy code of ours, as well as prepare for the future lavu/tx
conversion. The coefficients are simply scaled down to 25 bits during windowing,
skipping 2 separate scalings, as the hacks to extend precision are simply no longer
necessary. There's no point in running the MDCT always at 32 bits when you're
going to drop 6 bits off anyway, the headroom is plenty, and the MDCT rounds
properly.
This also makes the encoder even slightly more accurate over the float version,
as there's no coefficient conversion step necessary.
SIZE SAVINGS:
ARM32:
HARDCODED TABLES:
BASE - 10709590
DROP DSP - 10702872 - diff: -6.56KiB
DROP MDCT - 10667932 - diff: -34.12KiB - both: -40.68KiB
DROP FFT - 10336652 - diff: -323.52KiB - all: -364.20KiB
SOFTCODED TABLES:
BASE - 9685096
DROP DSP - 9678378 - diff: -6.56KiB
DROP MDCT - 9643466 - diff: -34.09KiB - both: -40.65KiB
DROP FFT - 9573918 - diff: -67.92KiB - all: -108.57KiB
ARM64:
HARDCODED TABLES:
BASE - 14641112
DROP DSP - 14633806 - diff: -7.13KiB
DROP MDCT - 14604812 - diff: -28.31KiB - both: -35.45KiB
DROP FFT - 14286826 - diff: -310.53KiB - all: -345.98KiB
SOFTCODED TABLES:
BASE - 13636238
DROP DSP - 13628932 - diff: -7.13KiB
DROP MDCT - 13599866 - diff: -28.38KiB - both: -35.52KiB
DROP FFT - 13542080 - diff: -56.43KiB - all: -91.95KiB
x86:
HARDCODED TABLES:
BASE - 12367336
DROP DSP - 12354698 - diff: -12.34KiB
DROP MDCT - 12331024 - diff: -23.12KiB - both: -35.46KiB
DROP FFT - 12029788 - diff: -294.18KiB - all: -329.64KiB
SOFTCODED TABLES:
BASE - 11358094
DROP DSP - 11345456 - diff: -12.34KiB
DROP MDCT - 11321742 - diff: -23.16KiB - both: -35.50KiB
DROP FFT - 11276946 - diff: -43.75KiB - all: -79.25KiB
PERFORMANCE (10min random s32le):
ARM32 - before - 39.9x - 0m15.046s
ARM32 - after - 28.2x - 0m21.525s
Speed: -30%
ARM64 - before - 36.1x - 0m16.637s
ARM64 - after - 36.0x - 0m16.727s
Speed: -0.5%
x86 - before - 184x - 0m3.277s
x86 - after - 190x - 0m3.187s
Speed: +3%