For encoding, this field is entirely redundant with
AVCodecContext.framerate.
For decoding, this field is entirely redundant with
AV_CODEC_PROP_FIELDS.
The function now accepts an existing buffer to avoid unnecessary allocations,
as well as only reporting the needed amount of bytes if you pass a NULL pointer
as input for data.
For this, both parameters become input and output, as well as making data
optional. This is backwards compatible, and as such not breaking any existing
use of the function in external code (if there's any).
Signed-off-by: James Almer <jamrial@gmail.com>
Described in HEVC spec A.3.7. Bump minor version and add APIchanges
entry for new added profile.
Signed-off-by: Linjie Fu <linjie.justin.fu@gmail.com>
Signed-off-by: Fei Wang <fei.w.wang@intel.com>
Their usefulness is questionable, very few decoders set them, and their type
should have been int64_t. A replacement field can be added later if a valid use
case is found.
Signed-off-by: Marton Balint <cus@passwd.hu>
Frame counters can overflow relatively easily (INT_MAX number of frames is
slightly more than 1 year for 60 fps content), so make sure we use 64 bit
values for them.
Also deprecate the old 32 bit frame_number attribute.
Signed-off-by: Marton Balint <cus@passwd.hu>
Callers currently have two ways of adding filters to a graph - they can
either
- create, initialize, and link them manually
- use one of the avfilter_graph_parse*() functions, which take a
(typically end-user-written) string, split it into individual filter
definitions+options, then create filters, apply options, initialize
filters, and finally link them - all based on information from this
string.
A major problem with the second approach is that it performs many
actions as a single atomic unit, leaving the caller no space to
intervene in between. Such intervention would be useful e.g. to
- modify filter options;
- supply hardware device contexts;
both of which typically must be done before the filter is initialized.
Callers who need such intervention are then forced to invent their own
filtergraph parsing, which is clearly suboptimal.
This commit aims to address this problem by adding a new modular
filtergraph parsing API. It adds a new avfilter_graph_segment_parse()
function to parse a string filtergraph description into an intermediate
tree-like representation (AVFilterGraphSegment and its children).
This intermediate form may then be applied step by step using further
new avfilter_graph_segment*() functions, with user intervention possible
between each step.
libavutil/color_utils contains some avpriv_ symbols that map
enum AVTransferCharacteristic values to gamma-curve approximations and
to the actual transfer functions to invert them (i.e. -> linear).
There's two issues with this:
(1) avpriv is evil and should be avoided whenever possible
(2) libavutil/csp.h exposes a public API for handling color that
already handles primaries and matricies
I don't see any reason this API has to be private, so this commit takes
the functionality from avutil/color_utils and merges it into avutil/csp
with an exposed av_ API rather than the previous avpriv_ API.
Every reference to the previous API has been updated to point to the
new one. color_utils.h has been deleted as well. This should not break
any applications as it only contained avpriv_ symbols in the first
place, so nothing in that header could be referenced by other
applications.
Signed-off-by: Leo Izen <leo.izen@gmail.com>
Signed-off-by: Anton Khirnov <anton@khirnov.net>
This is intended to be a more convenient replacement for
reordered_opaque.
Add support for it in the two encoders that offer
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE: libx264 and libx265. Other
encoders will be supported in future commits.
There are sill many users of these APIs within libav*, so this commit
introduced too many deprecation warnings, making compilation too noisy and
potentially hiding legit warnings.
Once the remaining users are ported, this can be reapplied.
This reverts commit 76d0038579.
This is a more explicit iteration API rather than using the "magic"
av_dict_get(d, "", t, AV_DICT_IGNORE_SUFFIX) which is not really
trivial to grasp what it does when casually reading through code.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
Add an AV_PIX_FMT_NE macro for RGB32FBE/RGB32FLE and also one for
RGBA32FBE/RGBA32FLE for packed 32-bit float RGB samples, and also
packed 32-bit float RGBA samples, respectively.
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: Leo Izen <leo.izen@gmail.com>
Users can't make anything with its content.
Making it opaque might allow us to avoid one level of indirection.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
avcodec_enum_to_chroma_pos() and avcodec_chroma_pos_to_enum()
deal with enum AVChromaLocation which is defined in lavu.
These functions are therefore replaced by
av_chroma_location_enum_to_pos() and av_chroma_location_pos_to_enum().
This commit provides the necessary deprecations. Also already make
these functions wrappers around the corresponding lavu functions
as not doing so would force one to disable deprecation warnings.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
They are intended as replacements for avcodec_enum_to_chroma_pos()
and avcodec_chroma_pos_to_enum().
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
They are also frequently used in libavformat.
This change does not cause any breakage as avcodec.h
includes defs.h.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
These are the formats we want/need to use when dealing with the Intel
VAAPI decoder for 12bit 4:2:0, 12bit 4:2:2, 10bit 4:4:4 and 12bit 4:4:4
respectively.
As with the already supported Y210 and YUVX (XVUY) formats, they are
based on formats Microsoft picked as their preferred 4:2:2 and 4:4:4
video formats, and Intel ran with it.
P12 and Y212 are simply an extension of 10 bit formats to say 12 bits
will be used, with 4 unused bits instead of 6.
XV30, and XV36, as exotic as they sound, are variants of Y410 and Y412
where the alpha channel is left formally undefined. We prefer these
over the alpha versions because the hardware cannot actually do
anything with the alpha channel and respecting it is just overhead.
Y412/XV46 is a normal looking packed 4 channel format where each
channel is 16bits wide but only the 12msb are used (like P012).
Y410/XV30 packs three 10bit channels in 32bits with 2bits of alpha,
like A/X2RGB10 style formats. This annoying layout forced me to define
the BE version as a bitstream format. It seems like our pixdesc
infrastructure can handle the LE version being byte-defined, but not
when it's reversed. If there's a better way to handle this, please
let me know. Our existing X2 formats all have the 2 bits at the MSB
end, but this format places them at the LSB end and that seems to be
the root of the problem.
It has been deprecated in b4f59beeb4,
but the attribute_deprecated was not set and there was no entry
in APIchanges. This commit adds these and schedules it for removal.
Given that the reason behind the deprecation is exactly the same
as in av_fopen_utf8(), reuse its FF_API_AV_FOPEN_UTF8.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
This is the alphaless version of VUYA that I introduced recently. After
further discussion and noting that the Intel vaapi driver explicitly
lists XYUV as a support format for encoding and decoding 8bit 444
content, we decided to switch our usage and avoid the overhead of
having a declared alpha channel around.
Note that I am not removing VUYA, as this turned out to have another
use, which was to replace the need for v408enc/dec when dealing with
the format.
The vaapi switching will happen in the next change
According to its documentation it returns "pts of the last muxed packet
+ its duration", but the value it actually returns right now is
(possibly guessed) dts after muxer-internal bitstream filtering (if
any).
This function was added for ffmpeg.c, but it is not used there anymore.
Since the value it returns is ill-defined and so inappropriate for any
serious use, deprecate it.
The "AYUV" format is defined by Microsoft as their preferred format for
4:4:4 content, and so it is the format used by Intel VAAPI and QSV.
As Microsoft like to define their byte ordering in little-endian
fashion, the memory order is reversed, and so our pix_fmt, which
follows memory order, has a reversed name (VUYA).