Similar to what is currently done for other components, e.g. (de)muxers.
There is nothing in the public part currently, but that will change in
future commits.
Currently it requires every single OPT_SPEC option to be accompanied by
an array of alternate names for this option. The vast majority of
options have no alternate names, resulting in a large numbers of
unnecessary single-element arrays that merely contain the option name.
Extend the option parsing API to allow marking options as having
alternate names, or as being the canonical name for some existing
alternatives. Use this new information to avoid the need for
abovementioned unnecessary single-element arrays.
Change the main loop and every component (demuxers, decoders, filters,
encoders, muxers) to use the previously added transcode scheduler. Every
instance of every such component was already running in a separate
thread, but now they can actually run in parallel.
Changes the results of ffmpeg-fix_sub_duration_heartbeat - tested by
JEEB to be more correct and deterministic.
See the comment block at the top of fftools/ffmpeg_sched.h for more
details on what this scheduler is for.
This commit adds the scheduling code itself, along with minimal
integration with the rest of the program:
* allocating and freeing the scheduler
* passing it throughout the call stack in order to register the
individual components (demuxers/decoders/filtergraphs/encoders/muxers)
with the scheduler
The scheduler is not actually used as of this commit, so it should not
result in any change in behavior. That will change in future commits.
* the code is made shorter and simpler
* avoids constantly allocating and freeing AVPackets, thanks to
ThreadQueue integration with ObjPool
* is consistent with decoding/filtering/muxing
* reduces the diff in the future switch to thread-aware scheduling
This makes ifile_get_packet() always block. Any potential issues caused
by this will be resolved by the switch to thread-aware scheduling in
future commits.
As previously for decoding, this is merely "scaffolding" for moving to a
fully threaded architecture and does not yet make filtering truly
parallel - the main thread will currently wait for the filtering thread
to finish its work before continuing. That will change in future commits
after encoders are also moved to threads and a thread-aware scheduler is
added.
Current code tracks min/max pts for each stream separately; then when
the file ends it combines them with last frame's duration to compute the
total duration of each stream; finally it selects the longest of those
durations as the file duration.
This is incorrect - the total file duration is the largest timestamp
difference between any frames, regardless of the stream.
Also change the way the last frame information is reported from decoders
to the muxer - previously it would be just the last frame's duration,
now the end timestamp is sent, which is simpler.
Changes the result of the fate-ffmpeg-streamloop-transcode-av test,
where the timestamps are shifted slightly forward. Note that the
matroska demuxer does not return the first audio packet after seeking
(due to buggy interaction betwen the generic code and the demuxer), so
there is a gap in audio.
Its function is analogous to that of the fps filter, so filtering is a
more appropriate place for this.
The main practical reason for this move is that it places the encoding
sync queue right at the boundary between filters and encoders. This will
be important when switching to threaded scheduling, as the sync queue
involves multiple streams and will thus need to do nontrivial
inter-thread synchronization.
In addition to framerate conversion, the closely-related
* encoder timebase selection
* applying the start_time offset
are also moved to filtering.
Always use the functionality of the latter, which makes more sense as it
avoids losing keyframes due to vsync code dropping frames.
Deprecate the 'source_no_drop' value, as it is now redundant.
ifilter_send_eof() will fail if the input has no real or fallback
parameters, so there is no need to handle the case of some inputs being
in EOF state yet having no parameters.
It is badly named (should have been -top_field_first, or at least -tff),
underdocumented and underspecified, and (most importantly) entirely
redundant with the setfield filter.
This function converts packet timestamps from the input stream timebase
to OutputStream.mux_timebase, which may or may not be equal to the
actual output AVStream timebase (and even when it is, this may not
always be the optimal choice due to bitstream filtering).
Just keep the timestamps in input stream timebase, they will be rescaled
as needed before bitstream filtering and/or sending the packet to the
muxer.
Move the av_rescale_delta() call for audio (needed to preserve accuracy
with coarse demuxer timebases) to write_packet.
Drop now-unused OutputStream.mux_timebase.
Read the timebase from FrameData rather than the input stream. This
should fix#10393 and generally be more reliable.
Replace the use of '-1' to indicate demuxing timebase with the string
'demux'. Also allow to request filter timebase with
'-enc_time_base filter'.
It now contains data from multiple sources, so group those items that
always come from the decoder. Also, initialize them to invalid values,
so that frames that did not originate from a decoder can be
distinguished.
This is only a preparatory step to a fully threaded architecture and
does not yet make decoding truly parallel - the main thread will
currently submit a packet and wait until it has been fully processed by
the decoding thread before moving on. Decoder behavior as observed by
the rest of the program should remain unchanged. That will change in
future commits after encoders and filters are moved to threads and a
thread-aware scheduler is added.
Make all relevant state per-filtergraph input, rather than per-input
stream. Refactor the code to make it work and avoid leaking memory when
a single subtitle stream is sent to multiple filters.
This queue should be associated with a specific filtergraph input - if
a subtitle stream is sent to multiple filters then each should have its
own queue.
This code is a sub2video analogue of ifilter_send_frame(), so it
properly belongs to the filtering code.
Note that using sub2video with more than one target for a given input
subtitle stream is currently broken and this commit does not change
that. It will be addressed in following commits.
Currently NULL would be passed for simple filtergraphs, which would
make the filter code extract the graph description from the output
stream when needed. This is unnecessarily convoluted.
This function is entangled with encoder setup, so it is more encoding
code rather than ffmpeg_hw code. This will allow making more encoder
state private in the future.