Fixed-point AAC decoder currently does not produce the same output on
all platforms. Until that is fixed, silence the audio stream using the
volume filter.
Also, actually use the aac_fixed decoder as was the original intent.
Use the next I/P/B or start code as the end of current frame.
Before the patch, extension start code, user data start code,
sequence end code and so on are treated as the start of next
frame.
Signed-off-by: Zhao Zhili <zhilizhao@tencent.com>
Since this is an external encoder not under our control, we cannot test
the encoded output exactly as is done for internal encoders. We can
still test however that the output is decodable and produces the
expected number of frames with expected dimensions, pixel formats, and
timestamps.
Adds JPEG 2000 decoder tests using materials from the conformance suite specified in
Rec. ITU-T T.803 | ISO/IEC 15444-4.
The test materials are available at https://gitlab.com/wg1/htj2k-codestreams
Signed-off-by: Pierre-Anthony Lemieux <pal@palemieux.com>
When no packet dts values are available from the container, video
decoding code will currently use its own guessed values, which will then
be propagated to pkt_dts on decoded frames and used as pts in certain
cases. This is inaccurate, fragile, and unnecessarily convoluted.
Simply removing this allows the extrapolation code introduced in the
previous commit to do a better job.
Changes the results of numerous h264 and hevc FATE tests, where no
spurious timestamp gaps are generated anymore. Several tests no longer
need -vsync passthrough.
When no timestamps are available from the container, the video decoding
code will currently use fake dts values - generated in
process_input_packet() based on a combination of information from the
decoder and the parser (obtained via the demuxer) - to generate
timestamps during decoder flushing. This is fragile, hard to follow, and
unnecessarily convoluted, since more reliable information can be
obtained directly from post-decoding values.
The new code keeps track of the last decoded frame pts and estimates its
duration based on a number of heuristics. Timestamps generated when both
pts and pkt_dts are missing are then simple pts+duration of the last frame.
The heuristics are somewhat complicated by the fact that lavf insists on
making up packet timestamps based on its highly incomplete information.
That should be removed in the future, allowing to further simplify this
code.
The results of the following tests change:
* h264-3386 now requires -fps_mode passthrough to avoid dropping frames
at the end; this is a pathology of the interaction of the new and old
code, and the fact that the sample switches from field to frame coding
in the last packet, and will be fixed in following commits
* hevc-conformance-DELTAQP_A_BRCM_4 stops inventing an arbitrary
timestamp gap at the end
* hevc-small422chroma - the single frame output by this test now has a
timestamp of 0, rather than an arbitrary 7
Timestamps in two FATE H.264 conformance tests now start at 1 instead
of 0, which also happens in some other H.264 tests before this commit
and so is not a big issue.
Conversely, timestamps in some HEVC conformance tests start from a
smaller value now.
Ideally this should be addressed later in a more general way.
h264-conformance-frext-frext2_panasonic_b no longer requires -vsync
passthrough.
The previous commit allowed turning on error correction for interlaced
samples. Turning it off amounts to a no-op for FATE. These samples
should be tested with EC1-3 (guess_mvs/deblock/favor_inter)
additionally.
Signed-off-by: J. Dekker <jdek@itanimul.li>
According to MXF specs the Stored Rectangle corresponds to the data which is
passed to the compressor and received from the decompressor, so they should
contain the width / height extended to the macroblock boundary.
In practice however width and height values rounded to the upper 16 multiples
are only seen when muxing MPEG formats. Therefore this patch changes stored
width and height values to unrounded for all non-MPEG formats, even macroblock
based ones.
For DNXHD the specs (ST 2019-4) explicitly indicates to use 1080 for 1088p.
For ProRes the specs (RDD 44) only refer to to ST 377-1 without precision but
no known commercial implementations are using rounded values.
DV is not using 16x16 macroblocks, so 16 rounding makes no sense.
The patch also fixes Sampled Width / Display Width to use unrounded values.
Signed-off-by: Marton Balint <cus@passwd.hu>
Splits the currently handled subtitle at random access point
packets that can be configured to follow a specific output stream.
Currently only subtitle streams which are directly mapped into the
same output in which the heartbeat stream resides are affected.
This way the subtitle - which is known to be shown at this time
can be split and passed to muxer before its full duration is
yet known. This is also a drawback, as this essentially outputs
multiple subtitles from a single input subtitle that continues
over multiple random access points. Thus this feature should not
be utilized in cases where subtitle output latency does not matter.
Co-authored-by: Andrzej Nadachowski <andrzej.nadachowski@24i.com>
Co-authored-by: Bernard Boulay <bernard.boulay@24i.com>
Signed-off-by: Jan Ekström <jan.ekstrom@24i.com>
Parsing should probably be enabled for all codecs, at least for headers,
but e.g. the AAC parser produces 1-byte packets of zero padding with it,
so I'm just enabling it for EAC3 for the moment.
Current code may, depending on the muxer, decide to use VSYNC_VFR tagged
with the specified framerate, without actually performing framerate
conversion. This is clearly wrong and against the documentation, which
states unambiguously that -r should produce CFR output for video
encoding.
FATE test changes:
* nuv-rtjpeg: replace -r with '-enc_time_base -1', which keeps the
original timebase. Output frames are now produced with proper
durations.
* filter-mpdecimate: just drop the -r option, it is unnecessary
* filter-fps-r: remove, this test makes no sense and actually
produces broken VFR output (with incorrect frame durations).