1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

7 Commits

Author SHA1 Message Date
Rémi Denis-Courmont
8009581912 lavc/opusdsp: RISC-V V (128-bit) postfilter
This is implemented for a vector size of 128-bit. Since the scalar
product in the inner loop covers 5 samples or 160 bits, we need a group
multipler of 2.

To avoid reconfiguring the vector type, the outer loop, which loads
multiple input samples sticks to the same multipler. Consequently, the
outer loop loads 8 samples per iteration. This is safe since the minimum
period of the CELT codec is 15 samples.

The same code would also work, albeit needlessly inefficiently with a
vector length of 256 bits. A proper implementation will follow instead.
2022-10-10 02:22:10 +02:00
Andreas Rheinhardt
40e6575aa3 all: Replace if (ARCH_FOO) checks by #if ARCH_FOO
This is more spec-compliant because it does not rely
on dead-code elimination by the compiler. Especially
MSVC has problems with this, as can be seen in
https://ffmpeg.org/pipermail/ffmpeg-devel/2022-May/296373.html
or
https://ffmpeg.org/pipermail/ffmpeg-devel/2022-May/297022.html

This commit does not eliminate every instance where we rely
on dead code elimination: It only tackles branching to
the initialization of arch-specific dsp code, not e.g. all
uses of CONFIG_ and HAVE_ checks. But maybe it is already
enough to compile FFmpeg with MSVC with whole-programm-optimizations
enabled (if one does not disable too many components).

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-06-15 04:56:37 +02:00
Andreas Rheinhardt
636631d9db Remove unnecessary libavutil/(avutil|common|internal).h inclusions
Some of these were made possible by moving several common macros to
libavutil/macros.h.

While just at it, also improve the other headers a bit.

Reviewed-by: Martin Storsjö <martin@martin.st>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-02-24 12:56:49 +01:00
Lynne
6b22e28f4c opusdsp: adjust and optimize C function to match assembly
The C and asm versions behaved differently _outside_ of the codec.

The C version returned pre-multiplied 'state' for the next execution
to use right away, while the assembly version outputted non-multiplied
'state' for the next execution to multiply to save instructions.
Since the initial state when initialized or seeking is always 0,
and since C and asm versions were never mixed, there was no issue.

However, comparing outputs directly in checkasm doesn't work without
dividing the initial state by CELT_EMPH_COEFF and multiplying the
returned state by CELT_EMPH_COEFF for the assembly function.

Since its actually faster to do this in C as well, copy the behavior the
asm versions use. As a reminder, the initial state 0 is divided by
CELT_EMPH_COEFF on seek and init (just in case in the future this is
changed, its technically more correct to init with CELT_EMPH_COEFF than 0,
however when seeking this will result in more audiable pops, unlike with 0
where the output gets in sync over a few samples).
2019-09-11 03:28:22 +01:00
Lynne
4d2f62150d aarch64/opusdsp: implement NEON accelerated postfilter and deemphasis
153372 UNITS in postfilter_c,   65536 runs,      0 skips
73164 UNITS in postfilter_neon,   65536 runs,      0 skips -> 2.1x speedup

80591 UNITS in deemphasis_c,  131072 runs,      0 skips
43969 UNITS in deemphasis_neon,  131072 runs,      0 skips -> 1.83x speedup

Total decoder speedup: ~15% on a Raspberry Pi 3 (from 28.1x to 33.5x realtime)

Deemphasis SIMD based on the following unrolling:
const float c1 = CELT_EMPH_COEFF, c2 = c1*c1, c3 = c2*c1, c4 = c3*c1;
float state = coeff;

for (int i = 0; i < len; i += 4) {
    y[0] = x[0] + c1*state;
    y[1] = x[1] + c2*state + c1*x[0];
    y[2] = x[2] + c3*state + c1*x[1] + c2*x[0];
    y[3] = x[3] + c4*state + c1*x[2] + c2*x[1] + c3*x[0];

    state = y[3];
    y += 4;
    x += 4;
}

Unlike the x86 version, duplication is used instead of pslldq so
the structure and tables are different.
2019-04-10 01:08:54 +02:00
Lynne
605e330310 x86/opusdsp: implement FMA3 accelerated postfilter and deemphasis
58893 decicycles in deemphasis_c,  130548 runs,    524 skips
9475 decicycles in deemphasis_fma3,  130686 runs,    386 skips -> 6.21x speedup

24866 decicycles in postfilter_c,   65386 runs,    150 skips
5268 decicycles in postfilter_fma3,   65505 runs,     31 skips -> 4.72x speedup

Total decoder speedup: ~14%

Deemphasis SIMD based on the following unrolling:
const float c1 = CELT_EMPH_COEFF, c2 = c1*c1, c3 = c2*c1, c4 = c3*c1;
float state = coeff;

for (int i = 0; i < len; i += 4) {
    y[0] = x[0] + c1*state;
    y[1] = x[1] + c2*state + c1*x[0];
    y[2] = x[2] + c3*state + c1*x[1] + c2*x[0];
    y[3] = x[3] + c4*state + c1*x[2] + c2*x[1] + c3*x[0];

    state = y[3];
    y += 4;
    x += 4;
}
2019-04-01 00:22:00 +02:00
Lynne
0cea3ca894 opusdsp: create and move deemphasis and postfiltering from opus_celt 2019-04-01 00:19:14 +02:00