Before this change, it was possible to overflow pic_order_cnt_lsb and
generate a stream with invalid POC numbering. This makes sure that
the field is large enough that a single IDR B* P sequence uses fewer
than half the available POC lsb values.
This change makes the configured GOP size be respected exactly -
previously the value could be exceeded slightly due to flaws in the
frame type selection logic.
In H.264 section 8.2.1, we have that "The bitstream shall not contain
data that result in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not
equal to 0 for a coded IDR frame". This fixes the encoder to always
conform to this - previously the POC values formed an unbroken
sequence, not resetting to zero on IDR frames.
Signed-off-by: Mark Thompson <sw@jkqxz.net>
This moves work from the configure to the Make stage where it can
be parallelized and ensures that pkgconfig files are updated when
library versions change.
Bug-Id: 449
Calling ff_h264_field_end() when the per-field state is not properly
initialized leads to all kinds of undefined behaviour.
CC: libav-stable@libav.org
Bug-Id: 977 978 992
For field picture, the first_field is set based on its previous value.
Before this commit, first_field is set when reading the picture
coding extension. However, in corrupted files there may be multiple
picture coding extension headers, so the final value of first_field that
is actually used during decoding can be wrong. That can lead to various
undefined behaviour, like predicting from a non-existing field.
Fix this problem, by setting first_field in mpeg_field_start(), which
should be called exactly once per field.
CC: libav-stable@libav.org
Bug-ID: 999
Certain hardware decoding APIs are not guaranteed to be thread-safe, so
having the user access decoded hardware surfaces while the decoder is
running in another thread can cause failures (this is mainly known to
happen with DXVA2).
For such hwaccels, only allow the decoding thread to run while the user
is inside a lavc decode call (avcodec_send_packet/receive_frame).
It should only be set after the decoder state has been fully initialized
for using that SPS.
Fixes possible invalid reads on get_format() failure.
CC: libav-stable@libav.org
The former is not an official pseudo instruction although gas and llvm's
internal assembler support it. Fixes a build error with xcode 6.2
reported by Memphiz on github.
This improves commit 59c7022740.
In ff_thread_report_progress(), the fast code path can load
progress[field] with the relaxed memory order, and the slow code path
can store progress[field] with the release memory order. These changes
are mainly intended to avoid confusion when one inspects the source code.
They are unlikely to have measurable performance improvement.
ff_thread_report_progress() and ff_thread_await_progress() form a pair.
ff_thread_await_progress() reads progress[field] with the acquire memory
order (in the fast code path). Therefore, one expects to see
ff_thread_report_progress() write progress[field] with the matching
release memory order.
In the fast code path in ff_thread_report_progress(), the atomic load of
progress[field] doesn't need the acquire memory order because the
calling thread is trying to make the data it just decoded visible to the
other threads, rather than trying to read the data decoded by other
threads.
In ff_thread_get_buffer(), initialize progress[0] and progress[1] using
atomic_init().
Signed-off-by: Wan-Teh Chang <wtc@google.com>
Signed-off-by: Anton Khirnov <anton@khirnov.net>
This could happen when there was a frame number gap and frame threading was used.
Debugging-by: Ronald S. Bultje <rsbultje@gmail.com>
Debugging-by: Justin Ruggles <justin.ruggles@gmail.com>
Signed-off-by: Derek Buitenhuis <derek.buitenhuis@gmail.com>
CC:libav-stable@libav.org
Signed-off-by: Anton Khirnov <anton@khirnov.net>
It is more natural for this codec and allows to avoid awkward constructs
like "consuming 0 bytes from input". Also, keep a reference to the input
packet to avoid unnecessary copying.
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
The current code stores a pointer to the packet passed to the decoder,
which is then used during get_buffer() for timestamps and side data
passthrough. However, since this is a pointer to user data which we do
not own, storing it is potentially dangerous. It is also ill defined for
the new decoding API with split input/output.
Fix this problem by making an explicit internally owned copy of the
packet properties.
It is useful for testing/debugging and will also be used as the default
filter in the following commit adding pre-decode filtering to avoid
having a separate non-filtered codepath.
Also preserve the return value from ff_get_buffer().
Signed-off-by: Andreas Cadhalpun <Andreas.Cadhalpun@googlemail.com>
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
This is how we initialize refcount in libavutil/buffer.c.
Signed-off-by: Wan-Teh Chang <wtc@google.com>
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
This work is sponsored by, and copyright, Google.
Previously all subpartitions except the eob=1 (DC) case ran with
the same runtime:
vp9_inv_dct_dct_16x16_sub16_add_neon: 1373.2
vp9_inv_dct_dct_32x32_sub32_add_neon: 8089.0
By skipping individual 8x16 or 8x32 pixel slices in the first pass,
we reduce the runtime of these functions like this:
vp9_inv_dct_dct_16x16_sub1_add_neon: 235.3
vp9_inv_dct_dct_16x16_sub2_add_neon: 1036.7
vp9_inv_dct_dct_16x16_sub4_add_neon: 1036.7
vp9_inv_dct_dct_16x16_sub8_add_neon: 1036.7
vp9_inv_dct_dct_16x16_sub12_add_neon: 1372.1
vp9_inv_dct_dct_16x16_sub16_add_neon: 1372.1
vp9_inv_dct_dct_32x32_sub1_add_neon: 555.1
vp9_inv_dct_dct_32x32_sub2_add_neon: 5190.2
vp9_inv_dct_dct_32x32_sub4_add_neon: 5180.0
vp9_inv_dct_dct_32x32_sub8_add_neon: 5183.1
vp9_inv_dct_dct_32x32_sub12_add_neon: 6161.5
vp9_inv_dct_dct_32x32_sub16_add_neon: 6155.5
vp9_inv_dct_dct_32x32_sub20_add_neon: 7136.3
vp9_inv_dct_dct_32x32_sub24_add_neon: 7128.4
vp9_inv_dct_dct_32x32_sub28_add_neon: 8098.9
vp9_inv_dct_dct_32x32_sub32_add_neon: 8098.8
I.e. in general a very minor overhead for the full subpartition case due
to the additional cmps, but a significant speedup for the cases when we
only need to process a small part of the actual input data.
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
Previously all subpartitions except the eob=1 (DC) case ran with
the same runtime:
Cortex A7 A8 A9 A53
vp9_inv_dct_dct_16x16_sub16_add_neon: 3188.1 2435.4 2499.0 1969.0
vp9_inv_dct_dct_32x32_sub32_add_neon: 18531.7 16582.3 14207.6 12000.3
By skipping individual 4x16 or 4x32 pixel slices in the first pass,
we reduce the runtime of these functions like this:
vp9_inv_dct_dct_16x16_sub1_add_neon: 274.6 189.5 211.7 235.8
vp9_inv_dct_dct_16x16_sub2_add_neon: 2064.0 1534.8 1719.4 1248.7
vp9_inv_dct_dct_16x16_sub4_add_neon: 2135.0 1477.2 1736.3 1249.5
vp9_inv_dct_dct_16x16_sub8_add_neon: 2446.7 1828.7 1993.6 1494.7
vp9_inv_dct_dct_16x16_sub12_add_neon: 2832.4 2118.3 2266.5 1735.1
vp9_inv_dct_dct_16x16_sub16_add_neon: 3211.7 2475.3 2523.5 1983.1
vp9_inv_dct_dct_32x32_sub1_add_neon: 756.2 456.7 862.0 553.9
vp9_inv_dct_dct_32x32_sub2_add_neon: 10682.2 8190.4 8539.2 6762.5
vp9_inv_dct_dct_32x32_sub4_add_neon: 10813.5 8014.9 8518.3 6762.8
vp9_inv_dct_dct_32x32_sub8_add_neon: 11859.6 9313.0 9347.4 7514.5
vp9_inv_dct_dct_32x32_sub12_add_neon: 12946.6 10752.4 10192.2 8280.2
vp9_inv_dct_dct_32x32_sub16_add_neon: 14074.6 11946.5 11001.4 9008.6
vp9_inv_dct_dct_32x32_sub20_add_neon: 15269.9 13662.7 11816.1 9762.6
vp9_inv_dct_dct_32x32_sub24_add_neon: 16327.9 14940.1 12626.7 10516.0
vp9_inv_dct_dct_32x32_sub28_add_neon: 17462.7 15776.1 13446.2 11264.7
vp9_inv_dct_dct_32x32_sub32_add_neon: 18575.5 17157.0 14249.3 12015.1
I.e. in general a very minor overhead for the full subpartition case due
to the additional loads and cmps, but a significant speedup for the cases
when we only need to process a small part of the actual input data.
In common VP9 content in a few inspected clips, 70-90% of the non-dc-only
16x16 and 32x32 IDCTs only have nonzero coefficients in the upper left
8x8 or 16x16 subpartitions respectively.
Signed-off-by: Martin Storsjö <martin@martin.st>
This avoids reloading them if they haven't been clobbered, if the
first pass also was idct.
This is similar to what was done in the aarch64 version.
Signed-off-by: Martin Storsjö <martin@martin.st>
This fixes a heap-buffer-overflow in ff_er_frame_end when decoding mss2
with coded_width/coded_height larger than width/height.
Signed-off-by: Andreas Cadhalpun <Andreas.Cadhalpun@googlemail.com>
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
Since the same parameter is used for both input and output,
the name inout is more fitting.
This matches the naming used below in the dmbutterfly macro.
Signed-off-by: Martin Storsjö <martin@martin.st>
If realloc fails, the pointer is overwritten and the previously allocated buffer
is leaked, which goes against the expected functionality of keeping the packet
unchanged in case of error.
Signed-off-by: James Almer <jamrial@gmail.com>
Signed-off-by: Anton Khirnov <anton@khirnov.net>
This fixes an out-of-bounds read if avc->channels is 0.
Signed-off-by: Andreas Cadhalpun <Andreas.Cadhalpun@googlemail.com>
Signed-off-by: Anton Khirnov <anton@khirnov.net>
libavcodec/dvbsubdec.c:145:5: warning: ignoring return value of ‘system’, declared with attribute warn_unused_result [-Wunused-result]
libavcodec/dvbsubdec.c:148:5: warning: ignoring return value of ‘system’, declared with attribute warn_unused_result [-Wunused-result]
The clobbering tests in checkasm are only invoked when testing
correctness, so this bug didn't show up when benchmarking the
dc-only version.
Signed-off-by: Martin Storsjö <martin@martin.st>
The latter is 1 cycle faster on a cortex-53 and since the operands are
bytewise (or larger) bitmask (impossible to overflow to zero) both are
equivalent.
Since aarch64 has enough free general purpose registers use them to
branch to the appropiate storage code. 1-2 cycles faster for the
functions using loop_filter 8/16, ... on a cortex-a53. Mixed results
(up to 2 cycles faster/slower) on a cortex-a57.
In the latest git commits of libilbc developers removed WebRtc_xxx typedefs.
This commit uses int types instead. It's safe to apply also for previous
versions since WebRtc_Word16 was always a typedef of int16_t and
WebRtc_UWord16 a typedef of uint16_t.
Reviewed-by: Timothy Gu <timothygu99@gmail.com>
Signed-off-by: Diego Biurrun <diego@biurrun.de>
This was correct for H.26[45], because libmfx uses the same values
derived from profile_idc and the constraint_set flags, but it is
wrong for other codecs.
Also avoid passing FF_LEVEL_UNKNOWN (-99) as the level, as this is
certainly invalid.
This work is sponsored by, and copyright, Google.
These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the loop filters with
16 pixels at a time. The implementation is fully templated, with
a single macro which can generate versions for both 8 and
16 pixels wide, for both 4, 8 and 16 pixels loop filters
(and the 4/8 mixed versions as well).
For the 8 pixel wide versions, it is pretty close in speed (the
v_4_8 and v_8_8 filters are the best examples of this; the h_4_8
and h_8_8 filters seem to get some gain in the load/transpose/store
part). For the 16 pixels wide ones, we get a speedup of around
1.2-1.4x compared to the 32 bit version.
Examples of runtimes vs the 32 bit version, on a Cortex A53:
ARM AArch64
vp9_loop_filter_h_4_8_neon: 144.0 127.2
vp9_loop_filter_h_8_8_neon: 207.0 182.5
vp9_loop_filter_h_16_8_neon: 415.0 328.7
vp9_loop_filter_h_16_16_neon: 672.0 558.6
vp9_loop_filter_mix2_h_44_16_neon: 302.0 203.5
vp9_loop_filter_mix2_h_48_16_neon: 365.0 305.2
vp9_loop_filter_mix2_h_84_16_neon: 365.0 305.2
vp9_loop_filter_mix2_h_88_16_neon: 376.0 305.2
vp9_loop_filter_mix2_v_44_16_neon: 193.2 128.2
vp9_loop_filter_mix2_v_48_16_neon: 246.7 218.4
vp9_loop_filter_mix2_v_84_16_neon: 248.0 218.5
vp9_loop_filter_mix2_v_88_16_neon: 302.0 218.2
vp9_loop_filter_v_4_8_neon: 89.0 88.7
vp9_loop_filter_v_8_8_neon: 141.0 137.7
vp9_loop_filter_v_16_8_neon: 295.0 272.7
vp9_loop_filter_v_16_16_neon: 546.0 453.7
The speedup vs C code in checkasm tests is around 2-7x, which is
pretty much the same as for the 32 bit version. Even if these functions
are faster than their 32 bit equivalent, the C version that we compare
to also became around 1.3-1.7x faster than the C version in 32 bit.
Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-5x.
Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
A57 gcc-5.3 neon
loop_filter_h_4_8_neon: 256.6 93.4
loop_filter_h_8_8_neon: 307.3 139.1
loop_filter_h_16_8_neon: 340.1 254.1
loop_filter_h_16_16_neon: 827.0 407.9
loop_filter_mix2_h_44_16_neon: 524.5 155.4
loop_filter_mix2_h_48_16_neon: 644.5 173.3
loop_filter_mix2_h_84_16_neon: 630.5 222.0
loop_filter_mix2_h_88_16_neon: 697.3 222.0
loop_filter_mix2_v_44_16_neon: 598.5 100.6
loop_filter_mix2_v_48_16_neon: 651.5 127.0
loop_filter_mix2_v_84_16_neon: 591.5 167.1
loop_filter_mix2_v_88_16_neon: 855.1 166.7
loop_filter_v_4_8_neon: 271.7 65.3
loop_filter_v_8_8_neon: 312.5 106.9
loop_filter_v_16_8_neon: 473.3 206.5
loop_filter_v_16_16_neon: 976.1 327.8
The speed-up compared to the C functions is 2.5 to 6 and the cortex-a57
is again 30-50% faster than the cortex-a53.
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the 16x16 and 32x32
transforms in slices 8 pixels wide instead of 4. This gives
a speedup of around 1.4x compared to the 32 bit version.
The fact that aarch64 doesn't have the same d/q register
aliasing makes some of the macros quite a bit simpler as well.
Examples of runtimes vs the 32 bit version, on a Cortex A53:
ARM AArch64
vp9_inv_adst_adst_4x4_add_neon: 90.0 87.7
vp9_inv_adst_adst_8x8_add_neon: 400.0 354.7
vp9_inv_adst_adst_16x16_add_neon: 2526.5 1827.2
vp9_inv_dct_dct_4x4_add_neon: 74.0 72.7
vp9_inv_dct_dct_8x8_add_neon: 271.0 256.7
vp9_inv_dct_dct_16x16_add_neon: 1960.7 1372.7
vp9_inv_dct_dct_32x32_add_neon: 11988.9 8088.3
vp9_inv_wht_wht_4x4_add_neon: 63.0 57.7
The speedup vs C code (2-4x) is smaller than in the 32 bit case,
mostly because the C code ends up significantly faster (around
1.6x faster, with GCC 5.4) when built for aarch64.
Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
A57 gcc-5.3 neon
vp9_inv_adst_adst_4x4_add_neon: 152.2 60.0
vp9_inv_adst_adst_8x8_add_neon: 948.2 288.0
vp9_inv_adst_adst_16x16_add_neon: 4830.4 1380.5
vp9_inv_dct_dct_4x4_add_neon: 153.0 58.6
vp9_inv_dct_dct_8x8_add_neon: 789.2 180.2
vp9_inv_dct_dct_16x16_add_neon: 3639.6 917.1
vp9_inv_dct_dct_32x32_add_neon: 20462.1 4985.0
vp9_inv_wht_wht_4x4_add_neon: 91.0 49.8
The asm is around factor 3-4 faster than C on the cortex-a57 and the asm
is around 30-50% faster on the a57 compared to the a53.
Signed-off-by: Martin Storsjö <martin@martin.st>
libavcodec/ratecontrol.c:120:9: warning: ISO C forbids initialization between function pointer and ‘void *’ [-Wpedantic]
libavcodec/ratecontrol.c:121:9: warning: ISO C forbids initialization between function pointer and ‘void *’ [-Wpedantic]
This work is sponsored by, and copyright, Google.
The implementation tries to have smart handling of cases
where no pixels need the full filtering for the 8/16 width
filters, skipping both calculation and writeback of the
unmodified pixels in those cases. The actual effect of this
is hard to test with checkasm though, since it tests the
full filtering, and the benefit depends on how many filtered
blocks use the shortcut.
Examples of relative speedup compared to the C version, from checkasm:
Cortex A7 A8 A9 A53
vp9_loop_filter_h_4_8_neon: 2.72 2.68 1.78 3.15
vp9_loop_filter_h_8_8_neon: 2.36 2.38 1.70 2.91
vp9_loop_filter_h_16_8_neon: 1.80 1.89 1.45 2.01
vp9_loop_filter_h_16_16_neon: 2.81 2.78 2.18 3.16
vp9_loop_filter_mix2_h_44_16_neon: 2.65 2.67 1.93 3.05
vp9_loop_filter_mix2_h_48_16_neon: 2.46 2.38 1.81 2.85
vp9_loop_filter_mix2_h_84_16_neon: 2.50 2.41 1.73 2.85
vp9_loop_filter_mix2_h_88_16_neon: 2.77 2.66 1.96 3.23
vp9_loop_filter_mix2_v_44_16_neon: 4.28 4.46 3.22 5.70
vp9_loop_filter_mix2_v_48_16_neon: 3.92 4.00 3.03 5.19
vp9_loop_filter_mix2_v_84_16_neon: 3.97 4.31 2.98 5.33
vp9_loop_filter_mix2_v_88_16_neon: 3.91 4.19 3.06 5.18
vp9_loop_filter_v_4_8_neon: 4.53 4.47 3.31 6.05
vp9_loop_filter_v_8_8_neon: 3.58 3.99 2.92 5.17
vp9_loop_filter_v_16_8_neon: 3.40 3.50 2.81 4.68
vp9_loop_filter_v_16_16_neon: 4.66 4.41 3.74 6.02
The speedup vs C code is around 2-6x. The numbers are quite
inconclusive though, since the checkasm test runs multiple filterings
on top of each other, so later rounds might end up with different
codepaths (different decisions on which filter to apply, based
on input pixel differences). Disabling the early-exit in the asm
doesn't give a fair comparison either though, since the C code
only does the necessary calcuations for each row.
Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-9x.
This is pretty similar in runtime to the corresponding routines
in libvpx. (This is comparing vpx_lpf_vertical_16_neon,
vpx_lpf_horizontal_edge_8_neon and vpx_lpf_horizontal_edge_16_neon
to vp9_loop_filter_h_16_8_neon, vp9_loop_filter_v_16_8_neon
and vp9_loop_filter_v_16_16_neon - note that the naming of horizonal
and vertical is flipped between the libraries.)
In order to have stable, comparable numbers, the early exits in both
asm versions were disabled, forcing the full filtering codepath.
Cortex A7 A8 A9 A53
vp9_loop_filter_h_16_8_neon: 597.2 472.0 482.4 415.0
libvpx vpx_lpf_vertical_16_neon: 626.0 464.5 470.7 445.0
vp9_loop_filter_v_16_8_neon: 500.2 422.5 429.7 295.0
libvpx vpx_lpf_horizontal_edge_8_neon: 586.5 414.5 415.6 383.2
vp9_loop_filter_v_16_16_neon: 905.0 784.7 791.5 546.0
libvpx vpx_lpf_horizontal_edge_16_neon: 1060.2 751.7 743.5 685.2
Our version is consistently faster on on A7 and A53, marginally slower on
A8, and sometimes faster, sometimes slower on A9 (marginally slower in all
three tests in this particular test run).
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
For the transforms up to 8x8, we can fit all the data (including
temporaries) in registers and just do a straightforward transform
of all the data. For 16x16, we do a transform of 4x16 pixels in
4 slices, using a temporary buffer. For 32x32, we transform 4x32
pixels at a time, in two steps of 4x16 pixels each.
Examples of relative speedup compared to the C version, from checkasm:
Cortex A7 A8 A9 A53
vp9_inv_adst_adst_4x4_add_neon: 3.39 5.83 4.17 4.01
vp9_inv_adst_adst_8x8_add_neon: 3.79 4.86 4.23 3.98
vp9_inv_adst_adst_16x16_add_neon: 3.33 4.36 4.11 4.16
vp9_inv_dct_dct_4x4_add_neon: 4.06 6.16 4.59 4.46
vp9_inv_dct_dct_8x8_add_neon: 4.61 6.01 4.98 4.86
vp9_inv_dct_dct_16x16_add_neon: 3.35 3.44 3.36 3.79
vp9_inv_dct_dct_32x32_add_neon: 3.89 3.50 3.79 4.42
vp9_inv_wht_wht_4x4_add_neon: 3.22 5.13 3.53 3.77
Thus, the speedup vs C code is around 3-6x.
This is mostly marginally faster than the corresponding routines
in libvpx on most cores, tested with their 32x32 idct (compared to
vpx_idct32x32_1024_add_neon). These numbers are slightly in libvpx's
favour since their version doesn't clear the input buffer like ours
do (although the effect of that on the total runtime probably is
negligible.)
Cortex A7 A8 A9 A53
vp9_inv_dct_dct_32x32_add_neon: 18436.8 16874.1 14235.1 11988.9
libvpx vpx_idct32x32_1024_add_neon 20789.0 13344.3 15049.9 13030.5
Only on the Cortex A8, the libvpx function is faster. On the other cores,
ours is slightly faster even though ours has got source block clearing
integrated.
Signed-off-by: Martin Storsjö <martin@martin.st>
When decoding with threads enabled, the get_format callback will be
called with one of the per-thread codec contexts rather than with the
outer context. If a hwaccel is in use too, this will add a reference
to the hardware frames context on that codec context, which will then
propagate to all of the other per-thread contexts for decoding. Once
the decoder finishes, however, the per-thread contexts are not freed
normally, so these references leak.
This fixes crashes since 557c1675cf in linux PIC builds.
Previously, movrelx silently used r12 as helper register, which
doesn't work when r12 is the destination register.
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
The speedup for the large horizontal filters is surprisingly
big on A7 and A53, while there's a minor slowdown (almost within
measurement noise) on A8 and A9.
Cortex A7 A8 A9 A53
orig:
vp9_put_8tap_smooth_64h_neon: 20270.0 14447.3 19723.9 10910.9
new:
vp9_put_8tap_smooth_64h_neon: 20165.8 14466.5 19730.2 10668.8
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
These are ported from the ARM version; it is essentially a 1:1
port with no extra added features, but with some hand tuning
(especially for the plain copy/avg functions). The ARM version
isn't very register starved to begin with, so there's not much
to be gained from having more spare registers here - we only
avoid having to clobber callee-saved registers.
Examples of runtimes vs the 32 bit version, on a Cortex A53:
ARM AArch64
vp9_avg4_neon: 27.2 23.7
vp9_avg8_neon: 56.5 54.7
vp9_avg16_neon: 169.9 167.4
vp9_avg32_neon: 585.8 585.2
vp9_avg64_neon: 2460.3 2294.7
vp9_avg_8tap_smooth_4h_neon: 132.7 125.2
vp9_avg_8tap_smooth_4hv_neon: 478.8 442.0
vp9_avg_8tap_smooth_4v_neon: 126.0 93.7
vp9_avg_8tap_smooth_8h_neon: 241.7 234.2
vp9_avg_8tap_smooth_8hv_neon: 690.9 646.5
vp9_avg_8tap_smooth_8v_neon: 245.0 205.5
vp9_avg_8tap_smooth_64h_neon: 11273.2 11280.1
vp9_avg_8tap_smooth_64hv_neon: 22980.6 22184.1
vp9_avg_8tap_smooth_64v_neon: 11549.7 10781.1
vp9_put4_neon: 18.0 17.2
vp9_put8_neon: 40.2 37.7
vp9_put16_neon: 97.4 99.5
vp9_put32_neon/armv8: 346.0 307.4
vp9_put64_neon/armv8: 1319.0 1107.5
vp9_put_8tap_smooth_4h_neon: 126.7 118.2
vp9_put_8tap_smooth_4hv_neon: 465.7 434.0
vp9_put_8tap_smooth_4v_neon: 113.0 86.5
vp9_put_8tap_smooth_8h_neon: 229.7 221.6
vp9_put_8tap_smooth_8hv_neon: 658.9 621.3
vp9_put_8tap_smooth_8v_neon: 215.0 187.5
vp9_put_8tap_smooth_64h_neon: 10636.7 10627.8
vp9_put_8tap_smooth_64hv_neon: 21076.8 21026.9
vp9_put_8tap_smooth_64v_neon: 9635.0 9632.4
These are generally about as fast as the corresponding ARM
routines on the same CPU (at least on the A53), in most cases
marginally faster.
The speedup vs C code is pretty much the same as for the 32 bit
case; on the A53 it's around 6-13x for ther larger 8tap filters.
The exact speedup varies a little, since the C versions generally
don't end up exactly as slow/fast as on 32 bit.
Signed-off-by: Martin Storsjö <martin@martin.st>