/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/lfg.h" #include "libavutil/random_seed.h" #include "libavcodec/apv_decode.h" #include "libavcodec/apv_dsp.h" #include "libavcodec/put_bits.h" // Whole file included here to get internal symbols. #include "libavcodec/apv_entropy.c" // As defined in 7.1.4, for testing. // Adds a check to limit loop after reading 16 zero bits to avoid // getting stuck reading a stream of zeroes forever (this matches // the behaviour of the faster version). static unsigned int apv_read_vlc_spec(GetBitContext *gbc, int k_param) { unsigned int symbol_value = 0; int parse_exp_golomb = 1; int k = k_param; int stop_loop = 0; if(get_bits1(gbc) == 1) { parse_exp_golomb = 0; } else { if (get_bits1(gbc) == 0) { symbol_value += (1 << k); parse_exp_golomb = 0; } else { symbol_value += (2 << k); parse_exp_golomb = 1; } } if (parse_exp_golomb) { int read_limit = 0; do { if (get_bits1(gbc) == 1) { stop_loop = 1; } else { if (++read_limit == 16) break; symbol_value += (1 << k); k++; } } while (!stop_loop); } if (k > 0) symbol_value += get_bits(gbc, k); return symbol_value; } // As defined in 7.2.4, for testing. static void apv_write_vlc_spec(PutBitContext *pbc, unsigned int symbol_val, int k_param) { int prefix_vlc_table[3][2] = {{1, 0}, {0, 0}, {0, 1}}; unsigned int symbol_value = symbol_val; int val_prefix_vlc = av_clip(symbol_val >> k_param, 0, 2); int bit_count = 0; int k = k_param; while (symbol_value >= (1 << k)) { symbol_value -= (1 << k); if (bit_count < 2) put_bits(pbc, 1, prefix_vlc_table[val_prefix_vlc][bit_count]); else put_bits(pbc, 1, 0); if (bit_count >= 2) ++k; ++bit_count; } if(bit_count < 2) put_bits(pbc, 1, prefix_vlc_table[val_prefix_vlc][bit_count]); else put_bits(pbc, 1, 1); if(k > 0) put_bits(pbc, k, symbol_value); } // Old version of ff_apv_entropy_decode_block, for test comparison. static int apv_entropy_decode_block(int16_t *restrict coeff, GetBitContext *restrict gbc, APVEntropyState *restrict state) { const APVVLCLUT *lut = state->decode_lut; // DC coefficient. { int abs_dc_coeff_diff; int sign_dc_coeff_diff; int dc_coeff; abs_dc_coeff_diff = apv_read_vlc(gbc, state->prev_k_dc, lut); if (abs_dc_coeff_diff > 0) sign_dc_coeff_diff = get_bits1(gbc); else sign_dc_coeff_diff = 0; if (sign_dc_coeff_diff) dc_coeff = state->prev_dc - abs_dc_coeff_diff; else dc_coeff = state->prev_dc + abs_dc_coeff_diff; if (dc_coeff < APV_MIN_TRANS_COEFF || dc_coeff > APV_MAX_TRANS_COEFF) { av_log(state->log_ctx, AV_LOG_ERROR, "Out-of-range DC coefficient value: %d " "(from prev_dc %d abs_dc_coeff_diff %d sign_dc_coeff_diff %d)\n", dc_coeff, state->prev_dc, abs_dc_coeff_diff, sign_dc_coeff_diff); return AVERROR_INVALIDDATA; } coeff[0] = dc_coeff; state->prev_dc = dc_coeff; state->prev_k_dc = FFMIN(abs_dc_coeff_diff >> 1, 5); } // AC coefficients. { int scan_pos = 1; int first_ac = 1; int k_run = 0; int k_level = state->prev_k_level; do { int coeff_zero_run; coeff_zero_run = apv_read_vlc(gbc, k_run, lut); if (coeff_zero_run > APV_BLK_COEFFS - scan_pos) { av_log(state->log_ctx, AV_LOG_ERROR, "Out-of-range zero-run value: %d (at scan pos %d)\n", coeff_zero_run, scan_pos); return AVERROR_INVALIDDATA; } for (int i = 0; i < coeff_zero_run; i++) { coeff[ff_zigzag_direct[scan_pos]] = 0; ++scan_pos; } k_run = FFMIN(coeff_zero_run >> 2, 2); if (scan_pos < APV_BLK_COEFFS) { int abs_ac_coeff_minus1; int sign_ac_coeff; int abs_level, level; abs_ac_coeff_minus1 = apv_read_vlc(gbc, k_level, lut); sign_ac_coeff = get_bits(gbc, 1); abs_level = abs_ac_coeff_minus1 + 1; if (sign_ac_coeff) level = -abs_level; else level = abs_level; if (level < APV_MIN_TRANS_COEFF || level > APV_MAX_TRANS_COEFF) { av_log(state->log_ctx, AV_LOG_ERROR, "Out-of-range AC coefficient value: %d " "(from k_param %d abs_ac_coeff_minus1 %d sign_ac_coeff %d)\n", level, k_level, abs_ac_coeff_minus1, sign_ac_coeff); } coeff[ff_zigzag_direct[scan_pos]] = level; k_level = FFMIN(abs_level >> 2, 4); if (first_ac) { state->prev_k_level = k_level; first_ac = 0; } ++scan_pos; } } while (scan_pos < APV_BLK_COEFFS); } return 0; } static void binary(char *buf, uint32_t value, int bits) { for (int i = 0; i < bits; i++) buf[i] = (value >> (bits - i - 1) & 1) ? '1' : '0'; buf[bits] = '\0'; } static int test_apv_read_vlc(void) { APVVLCLUT lut; int err = 0; ff_apv_entropy_build_decode_lut(&lut); // Generate all possible 20 bit sequences (padded with zeroes), then // verify that spec and improved parsing functions get the same result // and consume the same number of bits for each possible k_param. for (int k = 0; k <= 5; k++) { for (uint32_t b = 0; b < (1 << 20); b++) { uint8_t buf[8] = { b >> 12, b >> 4, b << 4, 0, 0, 0, 0, 0 }; GetBitContext gbc_test, gbc_spec; unsigned int res_test, res_spec; int con_test, con_spec; init_get_bits8(&gbc_test, buf, 8); init_get_bits8(&gbc_spec, buf, 8); res_test = apv_read_vlc (&gbc_test, k, &lut); res_spec = apv_read_vlc_spec(&gbc_spec, k); con_test = get_bits_count(&gbc_test); con_spec = get_bits_count(&gbc_spec); if (res_test != res_spec || con_test != con_spec) { char str[21]; binary(str, b, 20); av_log(NULL, AV_LOG_ERROR, "Mismatch reading %s (%d) with k=%d:\n", str, b, k); av_log(NULL, AV_LOG_ERROR, "Test function result %d consumed %d bits.\n", res_test, con_test); av_log(NULL, AV_LOG_ERROR, "Spec function result %d consumed %d bits.\n", res_spec, con_spec); ++err; if (err > 10) return err; } } } return err; } static int random_coeff(AVLFG *lfg) { // Geometric distribution of code lengths (1-14 bits), // uniform distribution within codes of the length, // equal probability of either sign. int length = (av_lfg_get(lfg) / (UINT_MAX / 14 + 1)); int random = av_lfg_get(lfg); int value = (1 << length) + (random & (1 << length) - 1); if (random & (1 << length)) return value; else return -value; } static int random_run(AVLFG *lfg) { // Expoenential distribution of run lengths. unsigned int random = av_lfg_get(lfg); for (int len = 0;; len++) { if (random & (1 << len)) return len; } // You rolled zero on a 2^32 sided die; well done! return 64; } static int test_apv_entropy_decode_block(void) { // Generate random entropy blocks, code them, then ensure they // decode to the same block with both implementations. APVVLCLUT decode_lut; AVLFG lfg; unsigned int seed = av_get_random_seed(); av_lfg_init(&lfg, seed); av_log(NULL, AV_LOG_INFO, "seed = %u\n", seed); ff_apv_entropy_build_decode_lut(&decode_lut); for (int t = 0; t < 100; t++) { APVEntropyState state, save_state; int16_t block[64]; int16_t block_test1[64]; int16_t block_test2[64]; uint8_t buffer[1024]; PutBitContext pbc; GetBitContext gbc; int bits_written; int pos, run, coeff, level, err; int k_dc, k_run, k_level; memset(block, 0, sizeof(block)); memset(buffer, 0, sizeof(buffer)); init_put_bits(&pbc, buffer, sizeof(buffer)); // Randomly-constructed state. memset(&state, 0, sizeof(state)); state.decode_lut = &decode_lut; state.prev_dc = random_coeff(&lfg); state.prev_k_dc = av_lfg_get(&lfg) % 5; state.prev_k_level = av_lfg_get(&lfg) % 4; save_state = state; k_dc = state.prev_k_dc; k_run = 0; k_level = state.prev_k_level; coeff = random_coeff(&lfg) / 2; block[ff_zigzag_direct[0]] = state.prev_dc + coeff; apv_write_vlc_spec(&pbc, FFABS(coeff), k_dc); if (coeff != 0) put_bits(&pbc, 1, coeff < 0); pos = 1; while (pos < 64) { run = random_run(&lfg); if (pos + run > 64) run = 64 - pos; apv_write_vlc_spec(&pbc, run, k_run); k_run = av_clip(run >> 2, 0, 2); pos += run; if (pos < 64) { coeff = random_coeff(&lfg); level = FFABS(coeff) - 1; block[ff_zigzag_direct[pos]] = coeff; apv_write_vlc_spec(&pbc, level, k_level); put_bits(&pbc, 1, coeff < 0); k_level = av_clip((level + 1) >> 2, 0, 4); ++pos; } } bits_written = put_bits_count(&pbc); flush_put_bits(&pbc); // Fill output block with a distinctive error value. for (int i = 0; i < 64; i++) block_test1[i] = -9999; init_get_bits8(&gbc, buffer, sizeof(buffer)); err = apv_entropy_decode_block(block_test1, &gbc, &state); if (err < 0) { av_log(NULL, AV_LOG_ERROR, "Entropy decode returned error.\n"); return 1; } else { int bits_read = get_bits_count(&gbc); if (bits_written != bits_read) { av_log(NULL, AV_LOG_ERROR, "Wrote %d bits but read %d.\n", bits_written, bits_read); return 1; } else { err = 0; for (int i = 0; i < 64; i++) { if (block[i] != block_test1[i]) ++err; } if (err > 0) { av_log(NULL, AV_LOG_ERROR, "%d mismatches in output block.\n", err); return err; } } } init_get_bits8(&gbc, buffer, sizeof(buffer)); memset(block_test2, 0, 64 * sizeof(int16_t)); err = ff_apv_entropy_decode_block(block_test2, &gbc, &save_state); if (err < 0) { av_log(NULL, AV_LOG_ERROR, "Entropy decode returned error.\n"); return 1; } else { int bits_read = get_bits_count(&gbc); if (bits_written != bits_read) { av_log(NULL, AV_LOG_ERROR, "Wrote %d bits but read %d.\n", bits_written, bits_read); return 1; } else { err = 0; for (int i = 0; i < 64; i++) { if (block[i] != block_test2[i]) ++err; } if (err > 0) { av_log(NULL, AV_LOG_ERROR, "%d mismatches in output block.\n", err); return err; } } } if (state.prev_dc != save_state.prev_dc || state.prev_k_dc != save_state.prev_k_dc || state.prev_k_level != save_state.prev_k_level) { av_log(NULL, AV_LOG_ERROR, "Entropy state mismatch.\n"); return 1; } } return 0; } int main(void) { int err; err = test_apv_read_vlc(); if (err) { av_log(NULL, AV_LOG_ERROR, "Read VLC test failed.\n"); return err; } err = test_apv_entropy_decode_block(); if (err) { av_log(NULL, AV_LOG_ERROR, "Entropy decode block test failed.\n"); return err; } return 0; }