/* * Copyright (c) 2018 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "filters.h" #include "video.h" #define R 0 #define G 1 #define B 2 #define A 3 typedef struct VibranceContext { const AVClass *class; float intensity; float balance[3]; float lcoeffs[3]; int alternate; int step; int depth; uint8_t rgba_map[4]; int (*do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs); } VibranceContext; static inline float lerpf(float v0, float v1, float f) { return v0 + (v1 - v0) * f; } typedef struct ThreadData { AVFrame *out, *in; } ThreadData; static int vibrance_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs) { VibranceContext *s = avctx->priv; ThreadData *td = arg; AVFrame *frame = td->out; AVFrame *in = td->in; const int width = frame->width; const int height = frame->height; const float scale = 1.f / 255.f; const float gc = s->lcoeffs[0]; const float bc = s->lcoeffs[1]; const float rc = s->lcoeffs[2]; const float intensity = s->intensity; const float alternate = s->alternate ? 1.f : -1.f; const float gintensity = intensity * s->balance[0]; const float bintensity = intensity * s->balance[1]; const float rintensity = intensity * s->balance[2]; const float sgintensity = alternate * FFSIGN(gintensity); const float sbintensity = alternate * FFSIGN(bintensity); const float srintensity = alternate * FFSIGN(rintensity); const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const ptrdiff_t glinesize = frame->linesize[0]; const ptrdiff_t blinesize = frame->linesize[1]; const ptrdiff_t rlinesize = frame->linesize[2]; const ptrdiff_t alinesize = frame->linesize[3]; const ptrdiff_t gslinesize = in->linesize[0]; const ptrdiff_t bslinesize = in->linesize[1]; const ptrdiff_t rslinesize = in->linesize[2]; const ptrdiff_t aslinesize = in->linesize[3]; const uint8_t *gsrc = in->data[0] + slice_start * glinesize; const uint8_t *bsrc = in->data[1] + slice_start * blinesize; const uint8_t *rsrc = in->data[2] + slice_start * rlinesize; uint8_t *gptr = frame->data[0] + slice_start * glinesize; uint8_t *bptr = frame->data[1] + slice_start * blinesize; uint8_t *rptr = frame->data[2] + slice_start * rlinesize; const uint8_t *asrc = in->data[3]; uint8_t *aptr = frame->data[3]; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = gsrc[x] * scale; float b = bsrc[x] * scale; float r = rsrc[x] * scale; float max_color = FFMAX3(r, g, b); float min_color = FFMIN3(r, g, b); float color_saturation = max_color - min_color; float luma = g * gc + r * rc + b * bc; const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation); const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation); const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation); g = lerpf(luma, g, cg); b = lerpf(luma, b, cb); r = lerpf(luma, r, cr); gptr[x] = av_clip_uint8(g * 255.f); bptr[x] = av_clip_uint8(b * 255.f); rptr[x] = av_clip_uint8(r * 255.f); } if (aptr && alinesize && frame != in) memcpy(aptr + alinesize * y, asrc + aslinesize * y, width); gsrc += gslinesize; bsrc += bslinesize; rsrc += rslinesize; gptr += glinesize; bptr += blinesize; rptr += rlinesize; } return 0; } static int vibrance_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs) { VibranceContext *s = avctx->priv; ThreadData *td = arg; AVFrame *frame = td->out; AVFrame *in = td->in; const int depth = s->depth; const float max = (1 << depth) - 1; const float scale = 1.f / max; const float gc = s->lcoeffs[0]; const float bc = s->lcoeffs[1]; const float rc = s->lcoeffs[2]; const int width = frame->width; const int height = frame->height; const float intensity = s->intensity; const float alternate = s->alternate ? 1.f : -1.f; const float gintensity = intensity * s->balance[0]; const float bintensity = intensity * s->balance[1]; const float rintensity = intensity * s->balance[2]; const float sgintensity = alternate * FFSIGN(gintensity); const float sbintensity = alternate * FFSIGN(bintensity); const float srintensity = alternate * FFSIGN(rintensity); const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const ptrdiff_t gslinesize = in->linesize[0] / 2; const ptrdiff_t bslinesize = in->linesize[1] / 2; const ptrdiff_t rslinesize = in->linesize[2] / 2; const ptrdiff_t aslinesize = in->linesize[3] / 2; const ptrdiff_t glinesize = frame->linesize[0] / 2; const ptrdiff_t blinesize = frame->linesize[1] / 2; const ptrdiff_t rlinesize = frame->linesize[2] / 2; const ptrdiff_t alinesize = frame->linesize[3] / 2; const uint16_t *gsrc = (const uint16_t *)in->data[0] + slice_start * gslinesize; const uint16_t *bsrc = (const uint16_t *)in->data[1] + slice_start * bslinesize; const uint16_t *rsrc = (const uint16_t *)in->data[2] + slice_start * rslinesize; uint16_t *gptr = (uint16_t *)frame->data[0] + slice_start * glinesize; uint16_t *bptr = (uint16_t *)frame->data[1] + slice_start * blinesize; uint16_t *rptr = (uint16_t *)frame->data[2] + slice_start * rlinesize; const uint16_t *asrc = (const uint16_t *)in->data[3]; uint16_t *aptr = (uint16_t *)frame->data[3]; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = gsrc[x] * scale; float b = bsrc[x] * scale; float r = rsrc[x] * scale; float max_color = FFMAX3(r, g, b); float min_color = FFMIN3(r, g, b); float color_saturation = max_color - min_color; float luma = g * gc + r * rc + b * bc; const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation); const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation); const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation); g = lerpf(luma, g, cg); b = lerpf(luma, b, cb); r = lerpf(luma, r, cr); gptr[x] = av_clip_uintp2_c(g * max, depth); bptr[x] = av_clip_uintp2_c(b * max, depth); rptr[x] = av_clip_uintp2_c(r * max, depth); } if (aptr && alinesize && frame != in) memcpy(aptr + alinesize * y, asrc + aslinesize * y, width * 2); gsrc += gslinesize; bsrc += bslinesize; rsrc += rslinesize; gptr += glinesize; bptr += blinesize; rptr += rlinesize; } return 0; } static int vibrance_slice8p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs) { VibranceContext *s = avctx->priv; ThreadData *td = arg; AVFrame *frame = td->out; AVFrame *in = td->in; const int step = s->step; const int width = frame->width; const int height = frame->height; const float scale = 1.f / 255.f; const float gc = s->lcoeffs[0]; const float bc = s->lcoeffs[1]; const float rc = s->lcoeffs[2]; const uint8_t roffset = s->rgba_map[R]; const uint8_t goffset = s->rgba_map[G]; const uint8_t boffset = s->rgba_map[B]; const uint8_t aoffset = s->rgba_map[A]; const float intensity = s->intensity; const float alternate = s->alternate ? 1.f : -1.f; const float gintensity = intensity * s->balance[0]; const float bintensity = intensity * s->balance[1]; const float rintensity = intensity * s->balance[2]; const float sgintensity = alternate * FFSIGN(gintensity); const float sbintensity = alternate * FFSIGN(bintensity); const float srintensity = alternate * FFSIGN(rintensity); const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const ptrdiff_t linesize = frame->linesize[0]; const ptrdiff_t slinesize = in->linesize[0]; const uint8_t *src = in->data[0] + slice_start * slinesize; uint8_t *ptr = frame->data[0] + slice_start * linesize; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = src[x * step + goffset] * scale; float b = src[x * step + boffset] * scale; float r = src[x * step + roffset] * scale; float max_color = FFMAX3(r, g, b); float min_color = FFMIN3(r, g, b); float color_saturation = max_color - min_color; float luma = g * gc + r * rc + b * bc; const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation); const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation); const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation); g = lerpf(luma, g, cg); b = lerpf(luma, b, cb); r = lerpf(luma, r, cr); ptr[x * step + goffset] = av_clip_uint8(g * 255.f); ptr[x * step + boffset] = av_clip_uint8(b * 255.f); ptr[x * step + roffset] = av_clip_uint8(r * 255.f); if (frame != in) ptr[x * step + aoffset] = src[x * step + aoffset]; } ptr += linesize; src += slinesize; } return 0; } static int vibrance_slice16p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs) { VibranceContext *s = avctx->priv; ThreadData *td = arg; AVFrame *frame = td->out; AVFrame *in = td->in; const int step = s->step; const int depth = s->depth; const float max = (1 << depth) - 1; const float scale = 1.f / max; const float gc = s->lcoeffs[0]; const float bc = s->lcoeffs[1]; const float rc = s->lcoeffs[2]; const uint8_t roffset = s->rgba_map[R]; const uint8_t goffset = s->rgba_map[G]; const uint8_t boffset = s->rgba_map[B]; const uint8_t aoffset = s->rgba_map[A]; const int width = frame->width; const int height = frame->height; const float intensity = s->intensity; const float alternate = s->alternate ? 1.f : -1.f; const float gintensity = intensity * s->balance[0]; const float bintensity = intensity * s->balance[1]; const float rintensity = intensity * s->balance[2]; const float sgintensity = alternate * FFSIGN(gintensity); const float sbintensity = alternate * FFSIGN(bintensity); const float srintensity = alternate * FFSIGN(rintensity); const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const ptrdiff_t linesize = frame->linesize[0] / 2; const ptrdiff_t slinesize = in->linesize[0] / 2; const uint16_t *src = (const uint16_t *)in->data[0] + slice_start * slinesize; uint16_t *ptr = (uint16_t *)frame->data[0] + slice_start * linesize; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = src[x * step + goffset] * scale; float b = src[x * step + boffset] * scale; float r = src[x * step + roffset] * scale; float max_color = FFMAX3(r, g, b); float min_color = FFMIN3(r, g, b); float color_saturation = max_color - min_color; float luma = g * gc + r * rc + b * bc; const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation); const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation); const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation); g = lerpf(luma, g, cg); b = lerpf(luma, b, cb); r = lerpf(luma, r, cr); ptr[x * step + goffset] = av_clip_uintp2_c(g * max, depth); ptr[x * step + boffset] = av_clip_uintp2_c(b * max, depth); ptr[x * step + roffset] = av_clip_uintp2_c(r * max, depth); if (frame != in) ptr[x * step + aoffset] = src[x * step + aoffset]; } ptr += linesize; src += slinesize; } return 0; } static int filter_frame(AVFilterLink *link, AVFrame *in) { AVFilterContext *avctx = link->dst; AVFilterLink *outlink = avctx->outputs[0]; VibranceContext *s = avctx->priv; ThreadData td; AVFrame *out; int res; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } td.out = out; td.in = in; if (res = ff_filter_execute(avctx, s->do_slice, &td, NULL, FFMIN(out->height, ff_filter_get_nb_threads(avctx)))) return res; if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); } static const enum AVPixelFormat pixel_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_NONE }; static av_cold int config_input(AVFilterLink *inlink) { AVFilterContext *avctx = inlink->dst; VibranceContext *s = avctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR; s->step = desc->nb_components; if (inlink->format == AV_PIX_FMT_RGB0 || inlink->format == AV_PIX_FMT_0RGB || inlink->format == AV_PIX_FMT_BGR0 || inlink->format == AV_PIX_FMT_0BGR) s->step = 4; s->depth = desc->comp[0].depth; s->do_slice = s->depth <= 8 ? vibrance_slice8 : vibrance_slice16; if (!planar) s->do_slice = s->depth <= 8 ? vibrance_slice8p : vibrance_slice16p; ff_fill_rgba_map(s->rgba_map, inlink->format); return 0; } static const AVFilterPad vibrance_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, }; #define OFFSET(x) offsetof(VibranceContext, x) #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption vibrance_options[] = { { "intensity", "set the intensity value", OFFSET(intensity), AV_OPT_TYPE_FLOAT, {.dbl=0}, -2, 2, VF }, { "rbal", "set the red balance value", OFFSET(balance[2]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF }, { "gbal", "set the green balance value", OFFSET(balance[0]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF }, { "bbal", "set the blue balance value", OFFSET(balance[1]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF }, { "rlum", "set the red luma coefficient", OFFSET(lcoeffs[2]), AV_OPT_TYPE_FLOAT, {.dbl=0.072186}, 0, 1, VF }, { "glum", "set the green luma coefficient", OFFSET(lcoeffs[0]), AV_OPT_TYPE_FLOAT, {.dbl=0.715158}, 0, 1, VF }, { "blum", "set the blue luma coefficient", OFFSET(lcoeffs[1]), AV_OPT_TYPE_FLOAT, {.dbl=0.212656}, 0, 1, VF }, { "alternate", "use alternate colors", OFFSET(alternate), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF }, { NULL } }; AVFILTER_DEFINE_CLASS(vibrance); const FFFilter ff_vf_vibrance = { .p.name = "vibrance", .p.description = NULL_IF_CONFIG_SMALL("Boost or alter saturation."), .p.priv_class = &vibrance_class, .p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .priv_size = sizeof(VibranceContext), FILTER_INPUTS(vibrance_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_PIXFMTS_ARRAY(pixel_fmts), .process_command = ff_filter_process_command, };