/* * ATRAC3+ compatible decoder * * Copyright (c) 2010-2013 Maxim Poliakovski * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Sony ATRAC3+ compatible decoder. * * Container formats used to store its data: * RIFF WAV (.at3) and Sony OpenMG (.oma, .aa3). * * Technical description of this codec can be found here: * http://wiki.multimedia.cx/index.php?title=ATRAC3plus * * Kudos to Benjamin Larsson and Michael Karcher * for their precious technical help! */ #include #include #include "libavutil/channel_layout.h" #include "libavutil/float_dsp.h" #include "avcodec.h" #include "get_bits.h" #include "internal.h" #include "atrac.h" #include "atrac3plus.h" typedef struct ATRAC3PContext { GetBitContext gb; AVFloatDSPContext *fdsp; DECLARE_ALIGNED(32, float, samples)[2][ATRAC3P_FRAME_SAMPLES]; ///< quantized MDCT spectrum DECLARE_ALIGNED(32, float, mdct_buf)[2][ATRAC3P_FRAME_SAMPLES]; ///< output of the IMDCT DECLARE_ALIGNED(32, float, time_buf)[2][ATRAC3P_FRAME_SAMPLES]; ///< output of the gain compensation DECLARE_ALIGNED(32, float, outp_buf)[2][ATRAC3P_FRAME_SAMPLES]; AtracGCContext gainc_ctx; ///< gain compensation context FFTContext mdct_ctx; FFTContext ipqf_dct_ctx; ///< IDCT context used by IPQF Atrac3pChanUnitCtx *ch_units; ///< global channel units int num_channel_blocks; ///< number of channel blocks uint8_t channel_blocks[5]; ///< channel configuration descriptor uint64_t my_channel_layout; ///< current channel layout } ATRAC3PContext; static av_cold int atrac3p_decode_close(AVCodecContext *avctx) { ATRAC3PContext *ctx = avctx->priv_data; av_freep(&ctx->ch_units); av_freep(&ctx->fdsp); return 0; } static av_cold int set_channel_params(ATRAC3PContext *ctx, AVCodecContext *avctx) { memset(ctx->channel_blocks, 0, sizeof(ctx->channel_blocks)); switch (avctx->channels) { case 1: if (avctx->channel_layout != AV_CH_FRONT_LEFT) avctx->channel_layout = AV_CH_LAYOUT_MONO; ctx->num_channel_blocks = 1; ctx->channel_blocks[0] = CH_UNIT_MONO; break; case 2: avctx->channel_layout = AV_CH_LAYOUT_STEREO; ctx->num_channel_blocks = 1; ctx->channel_blocks[0] = CH_UNIT_STEREO; break; case 3: avctx->channel_layout = AV_CH_LAYOUT_SURROUND; ctx->num_channel_blocks = 2; ctx->channel_blocks[0] = CH_UNIT_STEREO; ctx->channel_blocks[1] = CH_UNIT_MONO; break; case 4: avctx->channel_layout = AV_CH_LAYOUT_4POINT0; ctx->num_channel_blocks = 3; ctx->channel_blocks[0] = CH_UNIT_STEREO; ctx->channel_blocks[1] = CH_UNIT_MONO; ctx->channel_blocks[2] = CH_UNIT_MONO; break; case 6: avctx->channel_layout = AV_CH_LAYOUT_5POINT1_BACK; ctx->num_channel_blocks = 4; ctx->channel_blocks[0] = CH_UNIT_STEREO; ctx->channel_blocks[1] = CH_UNIT_MONO; ctx->channel_blocks[2] = CH_UNIT_STEREO; ctx->channel_blocks[3] = CH_UNIT_MONO; break; case 7: avctx->channel_layout = AV_CH_LAYOUT_6POINT1_BACK; ctx->num_channel_blocks = 5; ctx->channel_blocks[0] = CH_UNIT_STEREO; ctx->channel_blocks[1] = CH_UNIT_MONO; ctx->channel_blocks[2] = CH_UNIT_STEREO; ctx->channel_blocks[3] = CH_UNIT_MONO; ctx->channel_blocks[4] = CH_UNIT_MONO; break; case 8: avctx->channel_layout = AV_CH_LAYOUT_7POINT1; ctx->num_channel_blocks = 5; ctx->channel_blocks[0] = CH_UNIT_STEREO; ctx->channel_blocks[1] = CH_UNIT_MONO; ctx->channel_blocks[2] = CH_UNIT_STEREO; ctx->channel_blocks[3] = CH_UNIT_STEREO; ctx->channel_blocks[4] = CH_UNIT_MONO; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported channel count: %d!\n", avctx->channels); return AVERROR_INVALIDDATA; } return 0; } static av_cold int atrac3p_decode_init(AVCodecContext *avctx) { ATRAC3PContext *ctx = avctx->priv_data; int i, ch, ret; if (!avctx->block_align) { av_log(avctx, AV_LOG_ERROR, "block_align is not set\n"); return AVERROR(EINVAL); } ff_atrac3p_init_vlcs(); /* initialize IPQF */ ff_mdct_init(&ctx->ipqf_dct_ctx, 5, 1, 32.0 / 32768.0); ff_atrac3p_init_imdct(avctx, &ctx->mdct_ctx); ff_atrac_init_gain_compensation(&ctx->gainc_ctx, 6, 2); ff_atrac3p_init_wave_synth(); if ((ret = set_channel_params(ctx, avctx)) < 0) return ret; ctx->my_channel_layout = avctx->channel_layout; ctx->ch_units = av_mallocz_array(ctx->num_channel_blocks, sizeof(*ctx->ch_units)); ctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT); if (!ctx->ch_units || !ctx->fdsp) { atrac3p_decode_close(avctx); return AVERROR(ENOMEM); } for (i = 0; i < ctx->num_channel_blocks; i++) { for (ch = 0; ch < 2; ch++) { ctx->ch_units[i].channels[ch].ch_num = ch; ctx->ch_units[i].channels[ch].wnd_shape = &ctx->ch_units[i].channels[ch].wnd_shape_hist[0][0]; ctx->ch_units[i].channels[ch].wnd_shape_prev = &ctx->ch_units[i].channels[ch].wnd_shape_hist[1][0]; ctx->ch_units[i].channels[ch].gain_data = &ctx->ch_units[i].channels[ch].gain_data_hist[0][0]; ctx->ch_units[i].channels[ch].gain_data_prev = &ctx->ch_units[i].channels[ch].gain_data_hist[1][0]; ctx->ch_units[i].channels[ch].tones_info = &ctx->ch_units[i].channels[ch].tones_info_hist[0][0]; ctx->ch_units[i].channels[ch].tones_info_prev = &ctx->ch_units[i].channels[ch].tones_info_hist[1][0]; } ctx->ch_units[i].waves_info = &ctx->ch_units[i].wave_synth_hist[0]; ctx->ch_units[i].waves_info_prev = &ctx->ch_units[i].wave_synth_hist[1]; } avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; return 0; } static void decode_residual_spectrum(Atrac3pChanUnitCtx *ctx, float out[2][ATRAC3P_FRAME_SAMPLES], int num_channels, AVCodecContext *avctx) { int i, sb, ch, qu, nspeclines, RNG_index; float *dst, q; int16_t *src; /* calculate RNG table index for each subband */ int sb_RNG_index[ATRAC3P_SUBBANDS] = { 0 }; if (ctx->mute_flag) { for (ch = 0; ch < num_channels; ch++) memset(out[ch], 0, ATRAC3P_FRAME_SAMPLES * sizeof(*out[ch])); return; } for (qu = 0, RNG_index = 0; qu < ctx->used_quant_units; qu++) RNG_index += ctx->channels[0].qu_sf_idx[qu] + ctx->channels[1].qu_sf_idx[qu]; for (sb = 0; sb < ctx->num_coded_subbands; sb++, RNG_index += 128) sb_RNG_index[sb] = RNG_index & 0x3FC; /* inverse quant and power compensation */ for (ch = 0; ch < num_channels; ch++) { /* clear channel's residual spectrum */ memset(out[ch], 0, ATRAC3P_FRAME_SAMPLES * sizeof(*out[ch])); for (qu = 0; qu < ctx->used_quant_units; qu++) { src = &ctx->channels[ch].spectrum[ff_atrac3p_qu_to_spec_pos[qu]]; dst = &out[ch][ff_atrac3p_qu_to_spec_pos[qu]]; nspeclines = ff_atrac3p_qu_to_spec_pos[qu + 1] - ff_atrac3p_qu_to_spec_pos[qu]; if (ctx->channels[ch].qu_wordlen[qu] > 0) { q = ff_atrac3p_sf_tab[ctx->channels[ch].qu_sf_idx[qu]] * ff_atrac3p_mant_tab[ctx->channels[ch].qu_wordlen[qu]]; for (i = 0; i < nspeclines; i++) dst[i] = src[i] * q; } } for (sb = 0; sb < ctx->num_coded_subbands; sb++) ff_atrac3p_power_compensation(ctx, ch, &out[ch][0], sb_RNG_index[sb], sb); } if (ctx->unit_type == CH_UNIT_STEREO) { for (sb = 0; sb < ctx->num_coded_subbands; sb++) { if (ctx->swap_channels[sb]) { for (i = 0; i < ATRAC3P_SUBBAND_SAMPLES; i++) FFSWAP(float, out[0][sb * ATRAC3P_SUBBAND_SAMPLES + i], out[1][sb * ATRAC3P_SUBBAND_SAMPLES + i]); } /* flip coefficients' sign if requested */ if (ctx->negate_coeffs[sb]) for (i = 0; i < ATRAC3P_SUBBAND_SAMPLES; i++) out[1][sb * ATRAC3P_SUBBAND_SAMPLES + i] = -(out[1][sb * ATRAC3P_SUBBAND_SAMPLES + i]); } } } static void reconstruct_frame(ATRAC3PContext *ctx, Atrac3pChanUnitCtx *ch_unit, int num_channels, AVCodecContext *avctx) { int ch, sb; for (ch = 0; ch < num_channels; ch++) { for (sb = 0; sb < ch_unit->num_subbands; sb++) { /* inverse transform and windowing */ ff_atrac3p_imdct(ctx->fdsp, &ctx->mdct_ctx, &ctx->samples[ch][sb * ATRAC3P_SUBBAND_SAMPLES], &ctx->mdct_buf[ch][sb * ATRAC3P_SUBBAND_SAMPLES], (ch_unit->channels[ch].wnd_shape_prev[sb] << 1) + ch_unit->channels[ch].wnd_shape[sb], sb); /* gain compensation and overlapping */ ff_atrac_gain_compensation(&ctx->gainc_ctx, &ctx->mdct_buf[ch][sb * ATRAC3P_SUBBAND_SAMPLES], &ch_unit->prev_buf[ch][sb * ATRAC3P_SUBBAND_SAMPLES], &ch_unit->channels[ch].gain_data_prev[sb], &ch_unit->channels[ch].gain_data[sb], ATRAC3P_SUBBAND_SAMPLES, &ctx->time_buf[ch][sb * ATRAC3P_SUBBAND_SAMPLES]); } /* zero unused subbands in both output and overlapping buffers */ memset(&ch_unit->prev_buf[ch][ch_unit->num_subbands * ATRAC3P_SUBBAND_SAMPLES], 0, (ATRAC3P_SUBBANDS - ch_unit->num_subbands) * ATRAC3P_SUBBAND_SAMPLES * sizeof(ch_unit->prev_buf[ch][ch_unit->num_subbands * ATRAC3P_SUBBAND_SAMPLES])); memset(&ctx->time_buf[ch][ch_unit->num_subbands * ATRAC3P_SUBBAND_SAMPLES], 0, (ATRAC3P_SUBBANDS - ch_unit->num_subbands) * ATRAC3P_SUBBAND_SAMPLES * sizeof(ctx->time_buf[ch][ch_unit->num_subbands * ATRAC3P_SUBBAND_SAMPLES])); /* resynthesize and add tonal signal */ if (ch_unit->waves_info->tones_present || ch_unit->waves_info_prev->tones_present) { for (sb = 0; sb < ch_unit->num_subbands; sb++) if (ch_unit->channels[ch].tones_info[sb].num_wavs || ch_unit->channels[ch].tones_info_prev[sb].num_wavs) { ff_atrac3p_generate_tones(ch_unit, ctx->fdsp, ch, sb, &ctx->time_buf[ch][sb * 128]); } } /* subband synthesis and acoustic signal output */ ff_atrac3p_ipqf(&ctx->ipqf_dct_ctx, &ch_unit->ipqf_ctx[ch], &ctx->time_buf[ch][0], &ctx->outp_buf[ch][0]); } /* swap window shape and gain control buffers. */ for (ch = 0; ch < num_channels; ch++) { FFSWAP(uint8_t *, ch_unit->channels[ch].wnd_shape, ch_unit->channels[ch].wnd_shape_prev); FFSWAP(AtracGainInfo *, ch_unit->channels[ch].gain_data, ch_unit->channels[ch].gain_data_prev); FFSWAP(Atrac3pWavesData *, ch_unit->channels[ch].tones_info, ch_unit->channels[ch].tones_info_prev); } FFSWAP(Atrac3pWaveSynthParams *, ch_unit->waves_info, ch_unit->waves_info_prev); } static int atrac3p_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { ATRAC3PContext *ctx = avctx->priv_data; AVFrame *frame = data; int i, ret, ch_unit_id, ch_block = 0, out_ch_index = 0, channels_to_process; float **samples_p = (float **)frame->extended_data; frame->nb_samples = ATRAC3P_FRAME_SAMPLES; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; if ((ret = init_get_bits8(&ctx->gb, avpkt->data, avpkt->size)) < 0) return ret; if (get_bits1(&ctx->gb)) { av_log(avctx, AV_LOG_ERROR, "Invalid start bit!\n"); return AVERROR_INVALIDDATA; } while (get_bits_left(&ctx->gb) >= 2 && (ch_unit_id = get_bits(&ctx->gb, 2)) != CH_UNIT_TERMINATOR) { if (ch_unit_id == CH_UNIT_EXTENSION) { avpriv_report_missing_feature(avctx, "Channel unit extension"); return AVERROR_PATCHWELCOME; } if (ch_block >= ctx->num_channel_blocks || ctx->channel_blocks[ch_block] != ch_unit_id) { av_log(avctx, AV_LOG_ERROR, "Frame data doesn't match channel configuration!\n"); return AVERROR_INVALIDDATA; } ctx->ch_units[ch_block].unit_type = ch_unit_id; channels_to_process = ch_unit_id + 1; if ((ret = ff_atrac3p_decode_channel_unit(&ctx->gb, &ctx->ch_units[ch_block], channels_to_process, avctx)) < 0) return ret; decode_residual_spectrum(&ctx->ch_units[ch_block], ctx->samples, channels_to_process, avctx); reconstruct_frame(ctx, &ctx->ch_units[ch_block], channels_to_process, avctx); for (i = 0; i < channels_to_process; i++) memcpy(samples_p[out_ch_index + i], ctx->outp_buf[i], ATRAC3P_FRAME_SAMPLES * sizeof(**samples_p)); ch_block++; out_ch_index += channels_to_process; } *got_frame_ptr = 1; return FFMIN(avctx->block_align, avpkt->size); } AVCodec ff_atrac3p_decoder = { .name = "atrac3plus", .long_name = NULL_IF_CONFIG_SMALL("ATRAC3+ (Adaptive TRansform Acoustic Coding 3+)"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_ATRAC3P, .priv_data_size = sizeof(ATRAC3PContext), .init = atrac3p_decode_init, .close = atrac3p_decode_close, .decode = atrac3p_decode_frame, };